Skip to main content
Log in

Parametric shape optimization using the support function

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

A Correction to this article was published on 02 April 2022

This article has been updated

Abstract

The optimization of shape functionals under convexity, diameter or constant width constraints shows numerical challenges. The support function can be used in order to approximate solutions to such problems by finite dimensional optimization problems under various constraints. We propose a numerical framework in dimensions two and three and we present applications from the field of convex geometry. We consider the optimization of functionals depending on the volume, perimeter and Dirichlet Laplace eigenvalues under the aforementioned constraints. In particular we confirm numerically Meissner’s conjecture, regarding three dimensional bodies of constant width with minimal volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this paper are available from the corresponding author upon request.

Change history

References

  1. Lamboley, J., Novruzi, A.: Polygons as optimal shapes with convexity constraint. SIAM J. Control Optim. 48(5), 3003–3025 (2009/10)

  2. Lamboley, J., Novruzi, A., Pierre, M.: Regularity and singularities of optimal convex shapes in the plane. Arch. Ration. Mech. Anal. 205(1), 311–343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lachand-Robert, T., Oudet, E.: Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16(2), 368–379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mérigot, Q., Oudet, E.: Handling convexity-like constraints in variational problems. SIAM J. Numer. Anal. 52(5), 2466–2487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bayen, T., Lachand-Robert, T., Oudet, E.: Analytic parametrization of three-dimensional bodies of constant width. Arch. Ration. Mech. Anal. 186(2), 225–249 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lachand-Robert, T., Oudet, É.: Bodies of constant width in arbitrary dimension. Math. Nachr. 280(7), 740–750 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Oudet, E.: Shape optimization under width constraint. Discrete Comput. Geom. 49(2), 411–428 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bartels, S., Wachsmuth, G.: Numerical approximation of optimal convex shapes. SIAM J. Sci. Comput. 42(2), 1226–1244 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bayen, T., Henrion, D.: Semidefinite programming for optimizing convex bodies under width constraints. Optim. Methods Softw. 27(6), 1073–1099 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Antunes, P.R.S.: Maximal and minimal norm of Laplacian eigenfunctions in a given subdomain. Inverse Prob. 32(11), 115003–18 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Antunes, P.R.S., Henrot, A.: On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2130), 1577–1603 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Oudet, É.: Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM Control Optim. Calc. Var. 10(3), 315–330 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schneider, R.: Convex Bodies: the Brunn–Minkowski Theory. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  14. Anciaux, H., Guilfoyle, B.: On the three-dimensional Blaschke–Lebesgue problem. Proc. Am. Math. Soc. 139(5), 1831–1839 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Šír, Z., Gravesen, J., Jüttler, B.: Curves and surfaces represented by polynomial support functions. Theoret. Comput. Sci. 392(1–3), 141–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Valentine, F.A.: Convex Sets. McGraw-Hill Book Co., New York (1964)

    MATH  Google Scholar 

  17. Toponogov, V.A.: Differential Geometry of Curves and Surfaces. Birkhäuser Boston Inc., Boston (2006)

    Google Scholar 

  18. Henrot, A., Pierre, M.: Shape Variation and Optimization. European Mathematical Society (EMS), Zürich (2018)

    Book  MATH  Google Scholar 

  19. Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)

    Book  MATH  Google Scholar 

  20. Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems. Birkhäuser Boston Inc., Boston (2005)

    Book  MATH  Google Scholar 

  21. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, Basel (2006)

    Book  MATH  Google Scholar 

  22. Goldberg, M.: Rotors in polygons and polyhedra. Math. Comput. 14, 229–239 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meissner, E.: Über die anwendung von Fourier-reihen auf einige aufgaben der geometrie und kinematik. Vierteljahrschr. Naturforschenden Ges. 54, 309–329 (1909)

    MATH  Google Scholar 

  24. Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  25. Kawohl, B., Lachand-Robert, T.: Characterization of Cheeger sets for convex subsets of the plane. Pac. J. Math. 225(1), 103–118 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Carlier, G., Comte, M., Peyré, G.: Approximation of maximal Cheeger sets by projection. M2AN Math. Model. Numer. Anal. 43(1), 139–150 (2009)

  27. Caselles, V., Facciolo, G., Meinhardt, E.: Anisotropic Cheeger sets and applications. SIAM J. Imaging Sci. 2(4), 1211–1254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bogosel, B., Bucur, D., Fragalà, I.: Phase field approach to optimal packing problems and related Cheeger clusters. Appl. Math. Optim. 81(1), 63–87 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Antunes, P.R.S., Freitas, P.: Numerical optimization of low eigenvalues of the Dirichlet and Neumann Laplacians. J. Optim. Theory Appl. 154(1), 235–257 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Osting, B.: Optimization of spectral functions of Dirichlet–Laplacian eigenvalues. J. Comput. Phys. 229(22), 8578–8590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Antunes, P.R.S., Freitas, P.: Optimisation of eigenvalues of the Dirichlet Laplacian with a surface area restriction. Appl. Math. Optim. 73(2), 313–328 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Antunes, P.R.S.: Numerical calculation of eigensolutions of 3D shapes using the method of fundamental solutions. Numer. Methods Part. Differ. Equ. 27(6), 1525–1550 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Karageorghis, A.: The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation. Appl. Math. Lett. 14(7), 837–842 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Alves, C.J.S., Antunes, P.R.S.: The method of fundamental solutions applied to some inverse eigenproblems. SIAM J. Sci. Comput. 35(3), 1689–1708 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227(14), 7003–7026 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Betcke, T., Trefethen, L.N.: Reviving the method of particular solutions. SIAM Rev. 47(3), 469–491 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hiptmair, R., Paganini, A., Sargheini, S.: Comparison of approximate shape gradients. BIT 55(2), 459–485 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhu, S.: Effective shape optimization of Laplace eigenvalue problems using domain expressions of Eulerian derivatives. J. Optim. Theory Appl. 176(1), 17–34 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhu, S., Hu, X., Liao, Q.: Convergence analysis of Galerkin finite element approximations to shape gradients in eigenvalue optimization. BIT 60(3), 853–878 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bucur, D.: Minimization of the \(k\)-th eigenvalue of the Dirichlet Laplacian. Arch. Ration. Mech. Anal. 206(3), 1073–1083 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mazzoleni, D., Pratelli, A.: Existence of minimizers for spectral problems. J. Math. Pures Appl. (9) 100(3), 433–453 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. De Philippis, G., Velichkov, B.: Existence and regularity of minimizers for some spectral functionals with perimeter constraint. Appl. Math. Optim. 69(2), 199–231 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Bogosel, B., Henrot, A., Lucardesi, I.: Minimization of the eigenvalues of the Dirichlet–Laplacian with a diameter constraint. SIAM J. Math. Anal. 50(5), 5337–5361 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Henrot, A., Oudet, E.: Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions. Arch. Ration. Mech. Anal. 169(1), 73–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kawohl, B., Weber, C.: Meissner’s mysterious bodies. Math. Intell. 33(3), 94–101 (2011)

  46. Müller, M.: Konvexe Körper Konstanter Breite unter Besonderer Berücksichtigung des Meissner-Tetraeders. Diplomarbeit, Universität zu Köln (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beniamin Bogosel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: the another affiliation of Pedro R. S. Antunes is included in the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, P.R.S., Bogosel, B. Parametric shape optimization using the support function. Comput Optim Appl 82, 107–138 (2022). https://doi.org/10.1007/s10589-022-00360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-022-00360-4

Keywords

Navigation