Skip to main content
Log in

Bounds for the solutions of absolute value equations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In the recent years, there has been an intensive research of absolute value equations \(Ax-b=B|x|\). Various methods were developed, but less attention has been paid to approximating or bounding the solutions. We start filling this gap by proposing several outer approximations of the solution set. We present conditions for unsolvability and for existence of exponentially many solutions, too, and compare them with the known conditions. Eventually, we carried out numerical experiments to compare the methods with respect to computational time and quality of estimation. This helps in identifying the cases, in which the bounds are tight enough to determine the signs of the solution, and therefore also the solution itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baharev, A., Achterberg, T., Rév, E.: Computation of an extractive distillation column with affine arithmetic. AIChE J. 55(7), 1695–1704 (2009)

    Article  Google Scholar 

  2. Bello Cruz, J.Y., Ferreira, O.P., Prudente, L.F.: On the global convergence of the inexact semi-smooth Newton method for absolute value equation. Comput. Optim. Appl. 65(1), 93–108 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caccetta, L., Qu, B., Zhou, G.: A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 48(1), 45–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Esmaeili, H., Mahmoodabadi, E., Ahmadi, M.: A uniform approximation method to solve absolute value equation. Bull. Iran. Math. Soc. 41(5), 1259–1269 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, New York (2006)

    MATH  Google Scholar 

  6. Haghani, F.K.: On generalized Traub’s method for absolute value equations. J. Optim. Theory Appl. 166(2), 619–625 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hladík, M.: New operator and method for solving real preconditioned interval linear equations. SIAM J. Numer. Anal. 52(1), 194–206 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, S., Huang, Z.: A note on absolute value equations. Optim. Lett. 4(3), 417–424 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, X., Zhang, Y.: A smoothing-type algorithm for absolute value equations. J. Ind. Manag. Optim. 9(4), 789–798 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ketabchi, S., Moosaei, H.: An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side. Comput. Math. Appl. 64(6), 1882–1885 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36(1), 43–53 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3(1), 101–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mangasarian, O.L.: Absolute value equation solution via linear programming. J. Optim. Theory Appl. 161(3), 870–876 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mangasarian, O.L.: Linear complementarity as absolute value equation solution. Optim. Lett. 8(4), 1529–1534 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419(2), 359–367 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  17. Moosaei, H., Ketabchi, S., Noor, M.A., Iqbal, J., Hooshyarbakhsh, V.: Some techniques for solving absolute value equations. Appl. Math. Comput. 268, 696–705 (2015)

    MathSciNet  Google Scholar 

  18. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  19. Ning, S., Kearfott, R.B.: A comparison of some methods for solving linear interval equations. SIAM J. Numer. Anal. 34(4), 1289–1305 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Noor, M.A., Iqbal, J., Noor, K.I., Al-Said, E.A.: On an iterative method for solving absolute value equations. Optim. Lett. 6(5), 1027–1033 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Prokopyev, O.A.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44(3), 363–372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rohn, J.: Cheap and tight bounds: the recent result by E. Hansen can be made more efficient. Interval Comput. 1993(4), 13–21 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Rohn, J.: On unique solvability of the absolute value equation. Optim. Lett. 3(4), 603–606 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rohn, J.: An improvement of the Bauer–Skeel bounds. Technical report V-1065, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2010). http://uivtx.cs.cas.cz/~rohn/publist/bauerskeel.pdf

  25. Rohn, J.: An algorithm for computing all solutions of an absolute value equation. Optim. Lett. 6(5), 851–856 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rohn, J.: A manual of results on interval linear problems. Technical Report 1164, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2012). http://www.library.sk/arl-cav/en/detail/?&idx=cav_un_epca*0381706

  27. Rohn, J.: A class of explicitly solvable absolute value equations. Technical report V-1202, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2014). http://www.library.sk/arl-cav/sk/detail-cav_un_epca-0424937-/

  28. Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8(1), 35–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, A., Wang, H., Deng, Y.: Interval algorithm for absolute value equations. Cent. Eur. J. Math. 9(5), 1171–1184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, S., Guo, P.: On the unique solvability of the absolute value equation. J. Optim. Theory Appl. 169(2), 705–712 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author was supported by the Czech Science Foundation Grant P402/13-10660S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Hladík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hladík, M. Bounds for the solutions of absolute value equations. Comput Optim Appl 69, 243–266 (2018). https://doi.org/10.1007/s10589-017-9939-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-017-9939-0

Keywords

Mathematics Subject Classification

Navigation