Skip to main content
Log in

Conic approximation to quadratic optimization with linear complementarity constraints

Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a conic approximation algorithm for solving quadratic optimization problems with linear complementarity constraints.We provide a conic reformulation and its dual for the original problem such that these three problems share the same optimal objective value. Moreover, we show that the conic reformulation problem is attainable when the original problem has a nonempty and bounded feasible domain. Since the conic reformulation is in general a hard problem, some conic relaxations are further considered. We offer a condition under which both the semidefinite relaxation and its dual problem become strictly feasible for finding a lower bound in polynomial time. For more general cases, by adaptively refining the outer approximation of the feasible set, we propose a conic approximation algorithm to identify an optimal solution or an \(\epsilon \)-optimal solution of the original problem. A convergence proof is given under simple assumptions. Some computational results are included to illustrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Arima, N., Kim, S., Kojima, M.: Simplified copositive and lagrangian relaxations for linearly constrained quadratic optimization problems in continuous and binary variables. Pac. J. Optim. 10(3), 437–451 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Bai, L., Mitchell, J.E., Pang, J.S.: On convex quadratic programs with linear complementarity constraints. Comput. Optim. Appl. 54(3), 517–554 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, L., Mitchell, J.E., Pang, J.S.: On conic QPCCs, conic QCQPs and completely positive programs. Math. Program. Ser. A (2015)

  4. Beasley, J.E.: Heuristic algorithms for the unconstrained binary quadratic programming problem. Technical report (1998)

  5. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization, Analysis, Algorithms and Engineering Applications. MPS/SIAM Series on Optimization, 1st edn. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  6. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math. Program. 109(1), 55–68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buchheim, C., Wiegele, A.: Semidefinite relaxations for non-convex quadratic mixed-integer programming. Math. Program. 141(1–2), 435–452 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120(2), 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burer, S.: Optimizing a polyhedral-semidefinite relaxation of completely positive programs. Math. Prog. Comput. 2(1), 1–19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burer, S.: A gentle, geometric introduction to copositive optimization. Math. Program. Ser. B 151, 89–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, X., Ye, J.J.: A class of quadratic programs with linear complementarity constraints. Set-Valued Var. Anal. 17(2), 113–133 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Engau, A., Anjos, M., Vannelli, A.: On handling cutting planes in interior-point methods for solving semidefinite relaxations of binary quadratic optimization problems. Optim. Methods Softw. 27(3), 539–559 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fang, S.-C., Xing, W.: Linear Conic Optimization. Science Press, Beijing (2013)

    Google Scholar 

  14. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Floudas, C.A., Pardalos, P.M.: Handbook of Test Problems in Local and Global Optimization, 1st edn. Springer, Dordrecht (1999)

    Book  MATH  Google Scholar 

  16. Ghaddar, B., Anjos, M.F., Liers, F.: A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem. Ann. Oper. Res. 188(1), 155–174 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grant, M., Boyed, S.: CVX: Matlab software for disciplined convex programming, version 2.0(beta), http://cvxr.com/cvx (2013)

  18. Hu, J., Mitchell, J.E., Pang, J.S., Bennett, K.P., Kunapuli, G.: On the global solution of linear programs with linear complementarity constraints. SIAM J. Optim. 19(1), 445–471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Júdice, J.J., Faustino, A.M., Ribeiro, I.M.: On the solution of NP-hard linear complementarity problems. Sociedad de Estadística e Investigación Operativa TOP 10(1), 125–145 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Júdice, J.J.: Algorithms for linear programming with linear complementarity constraints. TOP 20(1), 4–25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kanzow, C., Schwartz, A.: A new regularization method for mathematical programs with complementarity constraints with strong convengence properities. SIAM J. Optim. 23(2), 770–798 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, S., Kojima, M., Kanzow, C., Schwartz, A.: A Lagrangian-DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems. Math. Program. Ser. A 156, 161–187 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Leyffer, S., López-Calva, G., Nocedal, J.: Interior methods for mathematical programs with complementarity constraints. SIAM J. Optim. 17(1), 52–77 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, G.S., Zhang, J.Z.: A new branch and bound algorithm for solving quadratic programs with linear complementarity constraints. J. Comput. Appl. Math. 146(1), 77–87 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, C., Jin, Q., Fang, S.-C., Wang, Z., Xing, W.: Adaptive computable approximation to cones of nonnegative quadratic functions. Optimization 64, 955–980 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu, C., Guo, X.: Convex reformulation for binary quadratic programming problems via average objective value maximization. Optim. Lett. 9(3), 523–535 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Luo, Z.Q., Ma, W.K., Mancho So, A., Ye, Y., Zhang, S.: Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27, 20–34 (2010)

    Article  Google Scholar 

  28. Mitchell, J.E., Pang, J.S., Yu, B.: Obtaining Tighter Relaxations of Mathematical Programs with Complementarity Constraints, Modeling and Optimization: Theory and Applications. Springer, New York (2012)

    MATH  Google Scholar 

  29. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39, 117–129 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rinaldi, G.: Rudy, http://www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz (1998)

  31. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program. 124(1–2), 383–411 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations. Math. Program. 130(2), 359–413 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28, 246–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tian, Y., Fang, S.-C., Deng, Z., Xing, W.: Computable representation of the cone of nonnegative quadratic forms over a general second-order cone and its application to completely positive programming. J. Ind. Manag. Optim. 9, 703–721 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tuncel, L.: On the Slater condition for the SDP relaxations of nonconvex sets. Oper. Res. Lett. 29, 181–186 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wiegele A.: Biq Mac Library, http://biqmac.uni-klu.ac.at/biqmaclib.html (2007)

  37. Zhou, J., Chen, D., Wang, Z., Xing, W.: A conic approximation method for the 0–1 quadratic knapsack problem. J. Ind. Manag. Optim. 9, 531–547 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhou, J., Deng, Z., Fang, S.-C., Xing, W.: Detection of a copositive matrix over a \(p\)-th order cone. Pac. J. Optim. 10(3), 593–611 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the National Natural Science Foundation of China under Grant Numbers 11171177, 11371216, 11526186 and 11571029, the Zhejiang Provincial Natural Science Foundation of China under Grant Number LQ16A010010, and US Army Research Office Grant Number W911NF-15-1-0223. The authors would also like to thank the editor and reviewers for their most valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxun Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Fang, SC. & Xing, W. Conic approximation to quadratic optimization with linear complementarity constraints. Comput Optim Appl 66, 97–122 (2017). https://doi.org/10.1007/s10589-016-9855-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-016-9855-8

Keywords

Mathematics Subject Classification

Navigation