Skip to main content
Log in

Abstract

A class of Pyragas type nonlocal feedback controllers with time-delay is investigated for the Schlögl model. The main goal is to find an optimal kernel in the controller such that the associated solution of the controlled equation is as close as possible to a desired spatio-temporal pattern. An optimal kernel is the solution to a nonlinear optimal control problem with the kernel taken as control function. The well-posedness of the optimal control problem and necessary optimality conditions are discussed for different types of kernels. Special emphasis is laid on time-periodic functions as desired patterns. Here, the cross correlation between the state and the desired pattern is invoked to set up an associated objective functional that is to be minimized. Numerical examples are presented for the 1D Schlögl model and a class of simple step functions for the kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Atay, F.: Distributed delays facilitate amplitude death of coupled oscillators. Phys. Rev. Lett. 91, 094101 (2003)

    Article  Google Scholar 

  2. Bachmair, C., Schöll, E.: Nonlocal control of pulse propagation in excitable media. Eur. Phys. J. B. (2014). doi:10.1140/epjb/e2014-50339-2

  3. Borzì, A., Griesse, R.: Distributed optimal control of lambda-omega systems. J. Numer. Math. 14(1), 17–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandão, A.J.V., Fernández-Cara, E., Paulo, P.M.D., Rojas-Medar, M.A.: Theoretical analysis and control results for the FitzHugh-Nagumo equation. Electron. J. Differ. Equ. 164, 1–20 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Buchholz, R., Engel, H., Kammann, E., Tröltzsch, F.: On the optimal control of the Schlögl model. Comput. Optim. Appl. 56, 153–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casas, E.: Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31, 993–1006 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casas, E., Ryll, C., Tröltzsch, F.: Second order and stability analysis for optimal sparse control of the FitzHugh-Nagumo equation. SIAM J. Control Optim. 53(4), 2168–2202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Casas, E., Ryll, C., Tröltzsch, F.: Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems. Comput. Methods Appl. Math. 13, 415–442 (2014). doi:10.1515/cmam-2013-0016

    Google Scholar 

  9. Nagaiah, C., Kunisch, K., Plank, G.: Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. 49, 149–178 (2011). doi:10.1007/s10589-009-9280-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Coron, J.M.: Control and Nonlinearity. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

  11. Di Benedetto, E.: On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scuola Sup. Pisa I 13, 487–535 (1986)

    MathSciNet  Google Scholar 

  12. Erneux, T.: Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences, vol. 3. Springer, New York (2009)

    Google Scholar 

  13. Gugat, M., Tröltzsch, F.: Boundary feedback stabilization of the Schlögl system. Automatica 51, 192–199 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kunisch, K., Wang, L.: Time optimal controls of the linear Fitzhugh-Nagumo equation with pointwise control constraints. J. Math. Anal. Appl. 395(1), 114–130 (2012). doi:10.1016/j.jmaa.2012.05.028

    Article  MathSciNet  MATH  Google Scholar 

  15. Kunisch, K., Wagner, M.: Optimal control of the bidomain system (iii): Existence of minimizers and first-order optimality conditions. ESAIM Math. Model. Numer. Anal. 47(4), 1077–1106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kunisch, K., Nagaiah, C., Wagner, M.: A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology. Comput. Vis. Sci. 14(6), 257–269 (2011)

    Article  MathSciNet  Google Scholar 

  17. Kyrychko, Y., Blyuss, K., Schöll, E.: Synchronization of networks of oscillators with distributed delay-coupling. Chaos 24, 043117 (2014)

    Article  MathSciNet  Google Scholar 

  18. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I: Abstract Parabolic Systems. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  19. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. II. Abstract Hyperbolic-Like Systems over a Finite Time Horizon. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  20. Löber, J., Coles, R., Siebert, J., Engel, H., Schöll, E.: Control of chemical wave propagation. In: Mikhailov, A., Ertl, G. (eds.) Engineering of Chemical Complexity II, pp. 185–207. World Scientific, Singapore. arXiv:1403.3363 (2014)

  21. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Rev. Lett. A 170, 421 (1992)

    Article  Google Scholar 

  22. Pyragas, K.: Delayed feedback control of chaos. Philos. Trans. R. Soc. A 364, 2309 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Raymond, J.P., Zidani, H.: Pontryagin’s principle for state-constrained control problems governed by parabolic equations with unbounded controls. SIAM J. Control Optim. 36, 1853–1879 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Raymond, J.P., Zidani, H.: Hamiltonian Pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39, 143–177 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schöll, E., Schuster, H.: Handbook of Chaos Control. Wiley-VCH, Weinheim (2008)

    MATH  Google Scholar 

  26. Siebert, J., Alonso, S., Bär, M., Schöll, E.: Dynamics of reaction-diffusion patterns controlled by asymmetric nonlocal coupling as a limiting case of differential advection. Phys. Rev. E 89, 052909 (2014). doi:10.1103/PhysRevE.89.052909

    Article  Google Scholar 

  27. Siebert, J., Schöll, E.: Front and turing patterns induced by mexican-hat-like nonlocal feedback. Europhys. Lett. 109, 40014 (2015)

    Article  Google Scholar 

  28. Smyshlyaev, A., Krstic, M.: Adaptive Control of Parabolic PDEs. Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  29. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications, vol. 112. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  30. Wille, C., Lehnert, J., Schöll, E.: Synchronization-desynchronization transitions in complex networks: an interplay of distributed time delay and inhibitory nodes. Phys. Rev. E 90, 032908 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG in the framework of the Collaborative Research Center SFB 910, Projects A1 and B6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredi Tröltzsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nestler, P., Schöll, E. & Tröltzsch, F. Optimization of nonlocal time-delayed feedback controllers. Comput Optim Appl 64, 265–294 (2016). https://doi.org/10.1007/s10589-015-9809-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9809-6

Keywords

Navigation