Skip to main content
Log in

Solving semi-infinite programs by smoothing projected gradient method

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study a semi-infinite programming (SIP) problem with a convex set constraint. Using the value function of the lower level problem, we reformulate SIP problem as a nonsmooth optimization problem. Using the theory of nonsmooth Lagrange multiplier rules and Danskin’s theorem, we present constraint qualifications and necessary optimality conditions. We propose a new numerical method for solving the problem. The novelty of our numerical method is to use the integral entropy function to approximate the value function and then solve SIP by the smoothing projected gradient method. Moreover we study the relationships between the approximating problems and the original SIP problem. We derive error bounds between the integral entropy function and the value function, and between locally optimal solutions of the smoothing problem and those for the original problem. Using certain second order sufficient conditions, we derive some estimates for locally optimal solutions of problem. Numerical experiments show that the algorithm is efficient for solving SIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, E.J., Nash, P.: Linear Programming in Infinite-Dimension over Topological Vector Space: Theory and Applications. Wiley, New York (1987)

    Google Scholar 

  2. Bhattacharjee, B., Lemonidis, P., Green Jr, W.H., Barton, P.I.: Global solution of semi-infinite programs. Math. Program. 103, 283–307 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cánovas, M.J., Hantoute, A., López, M.A., Parra, J.: Stability of indices in the KKT conditions and metric regularity in convex semi-infinite optimization. J. Optim. Theory Appl. 139, 485–500 (2008)

    Article  MathSciNet  Google Scholar 

  4. Chen, X., Womersley, R.S., Ye, J.J.: Minimizing the condition number of a Gram matrix. SIAM J. Optim. 21, 127–148 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)

    MATH  Google Scholar 

  6. Clarke, F.H., Ledyaev, YuS, Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  7. Coope, I.D., Watson, G.A.: A projected Lagrangian algorithm for semi-infinite programming. Math. Program. 32, 337–356 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Danskin, J.M.: The Theory of Max–Min and Its Applications to Weapons Allocation Problems. Springer, New York (1967)

    Book  Google Scholar 

  9. Fang, S.C., Lin, C.J., Wu, S.-Y.: Solving quadratic semi-infinite programming problems by using relaxed cutting-plane scheme. J. Comput. Appl. Math. 129, 89–104 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Floudas, C.A.: Deterministic Global Optimization, Theory, Methods and Applications. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  11. Floudas, C.A., Stein, O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming. SIAM J. Optim. 18, 1187–1208 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goberna, M.A., López, M.A.: Linear Semi-infinite Optimization. Wiley, Chichester (1998)

    MATH  Google Scholar 

  13. Guerra, Vśzquez F., Rückmann, J.-J., Stein, O., Still, G.: Generalized semi-infinite programming: a tutorial. J. Compu. Appl. Math. 217, 394–419 (2008)

    Article  MATH  Google Scholar 

  14. Gustafson, S.A., Kortanek, K.O.: Numerical treatment of a class of semi-infinite programming problems. Naval Res. Logis. Quart. 20, 477–504 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hettich, R.P., Jongen, H.T.: Semi-infinite Programming: Conditions of Optimality and Applications. In: Stoer, J. (ed.) Optimization Techniques. Lecture Notes in Control and Information Sciences. Springer, Berlin (1978)

    Google Scholar 

  16. Hettich, R.P., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35, 380–429 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hu, H.: A one-phase algorithm for semi-infinite linear programming. Math. Program. 46, 85–103 (1990)

    Article  MATH  Google Scholar 

  18. Jongen, H.T., Jonker, P., Twilt, F.: Critical sets in parametric optimization. Math. Program. 34, 333–353 (1989)

    Article  MathSciNet  Google Scholar 

  19. Jourani, A.: Constraint qualifications and Lagrange multipliers in nondifferentiable programming problems. J. Optim. Theory Appl. 81, 533–548 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kortanek, K., No, H.: A central cutting plane algorithm for convex semi-infinite programming problems. SIAM J. Optim. 3, 901–918 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lai, H.C., Wu, S.-Y.: On linear semi-infinite programming problems: an algorithm. Numer. Func. Anal. Optim. 13, 287–304 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ling, C., Ni, Q., Qi, L., Wu, S.-Y.: A new smoothing Newton-type algorithm for semi-infinite programming. J. Global Optim. 47, 133–159 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, D.H., Qi, L., Tam, J., Wu, S.-Y.: A smoothing Newton method for semi-infinite programming. J. Global Optim. 30, 169–194 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lin, G.H., Xu, M., Ye, J.J.: On solving simple bilevel programs with a nonconvex lower level program. Math. Program. Ser. A. doi:10.1007/s10107-013-0633-4

  25. López, M., Still, G.: Semi-infinite programming. Eur. J. Opera. Res. 180, 491–518 (2007)

    Article  MATH  Google Scholar 

  26. Ni, Q., Ling, C., Qi, L., Teo, K.L.: A truncated projected Newton-type algorithm for large-scale semi-infinite programming. SIAM J. Optim. 16, 1137–1154 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Polak, E.: Optimization: Algorithms and Consistent Approximations. Springer, Berlin (2006)

    Google Scholar 

  28. Polak, E.: On the mathematical foundations of nondifferentiable optimization in engineering design. SIAM Rev. 29, 21–89 (1987)

    Article  MathSciNet  Google Scholar 

  29. Qi, L., Ling, C., Tong, X.J., Zhou, G.: A smoothing projected Newton-type algorithm for semi-infinite programming. Comput. Optim. Appl. 42, 1–30 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Qi, L., Wu, S.-Y., Zhou, G.: Semismooth Newton methods for solving semi-infinite programming problems. J. Global Optim. 27, 215–232 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Reemtsen, R., Görner, S.: Numerical methods for semi-infinite programming: a survey. In: Reemtsen, R., Rückmann, J.-J. (eds.) Semi-Infinite Programming, pp. 195–275. Kluwer, Boston (1998)

    Chapter  Google Scholar 

  32. Roleff, K.: A stable multiple exchange algorithm for linear SIP. In: Hettich, R. (ed.) Semi-Infinite Programming. Lecture Notes in Control and Information Sciences, vol. 15, pp. 83–96. Springer, Berlin (1978)

  33. Shapiro, A.: Semi-infinite programming, duality, discretization and optimality conditions. Optimization 58, 133–161 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Shiu, T.-J., Wu, S.-Y.: Relaxed cutting plane method with convexification for solving nonlinear semi-infinite programming problems. Comput. Optim. Appl. 53, 91–113 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Stein, O.: Bilevel-Strategies on Semi-infinite Programming. Kluwer, Boston (2003)

    Book  Google Scholar 

  36. Stein, O.: How to solve a semi-infinite optimization problem. Eur. J. Oper. Res. 223, 312–320 (2012)

    Article  MATH  Google Scholar 

  37. Stein, O., Still, G.: Solving semi-infinite optimization problems with interior point techniques. SIAM J. Control Optim. 42, 769–788 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  38. Still, G.: Discretization in semi-infinite programming: the rate of convergence. Math. Program. 91, 53–69 (2001)

    MATH  MathSciNet  Google Scholar 

  39. Tanaka, Y., Fukushima, M., Ibaraki, T.: A globally convergent SQP method for semi-infinite nonlinear optimization. J. Comput. Appl. Math 23, 141–153 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  40. Teo, K.L., Yang, X.Q., Jennings, L.S.: Computational discretization algorithms for functional inequality constrained optimization. Ann. Oper. Res 28, 215–234 (2000)

    Article  MathSciNet  Google Scholar 

  41. Wu, S.-Y., Fang, S.C.: Solving convex programs with infinitely many linear constraints by a relaxed cutting plane method. Comput. Math. Appl. 38, 23–33 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wu, S.-Y., Fang, S.C., Lin, C.J.: Relaxed cutting plane method for solving linear semi-infinite programming problems. J. Optim. Theory Appl. 99, 759–779 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wu, S.-Y., Li, D.H., Qi, L., Zhou, G.: An iterative method for solving KKT system of the semi-infinite programming. Optim. Methods Soft. 20, 629–643 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. Ye, J.J., Wu, S.-Y.: First order optimality conditions for generalized semi-infinite programming problems. J. Optim. Theory Appl. 137, 419–434 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Zhang, L.P., Wu, S.-Y., López, M.A.: A new exchange method for convex semi-infinite programming. SIAM J. Optim. 20, 2959–2977 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research of this author was partially supported by NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane J. Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Wu, SY. & Ye, J.J. Solving semi-infinite programs by smoothing projected gradient method. Comput Optim Appl 59, 591–616 (2014). https://doi.org/10.1007/s10589-014-9654-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9654-z

Keywords

Mathematics Subject Classification

Navigation