Skip to main content
Log in

Optimal parameter selection for nonlinear multistage systems with time-delays

Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider a novel dynamic optimization problem for nonlinear multistage systems with time-delays. Such systems evolve over multiple stages, with the dynamics in each stage depending on both the current state of the system and the state at delayed times. The optimization problem involves choosing the values of the time-delays, as well as the values of additional parameters that influence the system dynamics, to minimize a given cost functional. We first show that the partial derivatives of the system state with respect to the time-delays and system parameters can be computed by solving a set of auxiliary dynamic systems in conjunction with the governing multistage system. On this basis, a gradient-based optimization algorithm is proposed to determine the optimal values of the delays and system parameters. Finally, two example problems, one of which involves parameter identification for a realistic fed-batch fermentation process, are solved to demonstrate the algorithm’s effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shi, J.J., Zhou, S.Y.: Quality control and improvement for multistage systems: a survey. IIE Trans. 41, 744–753 (2009)

    Article  Google Scholar 

  2. Deindoerfer, F.H., Humphrey, A.E.: Design of multistage systems for simple fermentation processes. Ind. Eng. Chem. 51, 809–812 (1959)

    Article  Google Scholar 

  3. Mazanov, A.: A multistage population model. J. Theor. Biol. 39, 581–587 (1973)

    Article  Google Scholar 

  4. Colledani, M., Matta, A., Tolio, T.: Analysis of the production variability in multi-stage manufacturing systems. CIRP Ann. – Manuf. Techn. 59, 449–452 (2010)

    Article  Google Scholar 

  5. Flam, R.P.: Time delay in multistage image tubes. Proc. IEEE 57, 2152–2153 (1969)

    Article  Google Scholar 

  6. Livk, I., Pohar, C., Ilievski, D.: Estimation of batch precipitation kinetics by a simplified differential method. AIChE J. 45, 1593–1596 (1999)

    Article  Google Scholar 

  7. Li, T.S., Livk, I., Ilievski, D.: Influence of the estimation procedure on the accuracy and precision of aluminum trihydroxide crystallization kinetics from dynamic data. Ind. Eng. Chem. Res. 40, 5005–5013 (2001)

    Article  Google Scholar 

  8. Wang, L.Y., Gui, W.H., Teo, K.L., Loxton, R., Yang, C.H.: Time delayed optimal control problems with multiple characteristic time points: computation and industrial applications. J. Ind. Manag. Optim. 5, 705–718 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Wu, C.Z., Teo, K.L., Rehbock, V.: Optimal control of piecewise affine systems with piecewise affine state feedback. J. Ind. Manag. Optim. 5, 737–747 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feng, Z.G., Teo, K.L.: Optimal feedback control for stochastic impulsive linear systems subject to Possion processes. In: Optimization and Optimal Control: Theory and Applications, pp. 241–258. Springer, Berlin (2010)

    Chapter  Google Scholar 

  11. Teo, K.L., Goh, C.J., Wong, K.H.: A Unified Computational Approach to Optimal Control Problems. Longman Scientific and Technical, Essex (1991)

    MATH  Google Scholar 

  12. Loxton, R., Teo, K.L., Rehbock, V.: Optimal control problems with multiple characteristic time points in the objective and constraints. Automatica 44, 2923–2929 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Feng, Z.G., Yiu, K.F.C., Teo, K.L.: A smoothing approach for the optimal parameter selection problem with continuous inequality constraint. Optim. Methods Softw. 28(4), 689–705 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pantelides, C.C., Barton, P.I.: Equation-oriented dynamic simulation: current status and future perspectives. Comput. Chem. Eng. 17S, S268–S285 (1993)

    Google Scholar 

  15. Morison, K.R., Sargent, R.W.H.: Optimization of multistage processes described by differential-algebraic equations. Lect. Notes Math. 1230, 86–102 (1986)

    Article  MathSciNet  Google Scholar 

  16. Vassiliadis, V.S., Sargen, R.W.H., Pantelides, C.C.: Solution of a class of multistage dynamic optimization problems: 1. Problem without path constraints. Ind. Eng. Chem. Res. 33, 2111–2122 (1994)

    Article  Google Scholar 

  17. Vassiliadis, V.S., Sargen, R.W.H., Pantelides, C.C.: Solution of a class of multistage dynamic optimization problems: 2. Problem with path constraints. Ind. Eng. Chem. Res. 33, 2123–2133 (1994)

    Article  Google Scholar 

  18. Shen, L.J., Wang, Y., Feng, E.M., Xiu, Z.L.: Bilevel parameters identification for the multi-stage nonlinear impulsive system in microorganisms fed-batch cultures. Nonlinear Anal., Real World Appl. 9, 1068–1077 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jiang, Z.G., Yuan, J.L., Feng, E.M.: Robust identification and its properties of nonlinear bilevel multi-stage dynamic system. Appl. Math. Comput. 219, 6979–6985 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Debeljković, D.: Time-Delay Systems. InTech, Rijeka (2011)

    Book  Google Scholar 

  21. Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 29, 1667–1694 (2003)

    Article  MathSciNet  Google Scholar 

  22. Gawthrop, P.J., Nihtilä, M.T.: Identification of time-delays using a polynomial identification method. Syst. Control Lett. 5, 267–271 (1985)

    Article  MATH  Google Scholar 

  23. Diop, S., Kolmanovsky, I., Moraal, P.E., Nieuwstadt, M.V.: Preserving stability/performance when facing an unknown time-delay. Control Eng. Pract. 9, 1319–1325 (2001)

    Article  Google Scholar 

  24. Pan, F., Han, R.C., Feng, D.M.: An identification method of time-varying delay based on genetic algorithm. In: Proceedings of the Second International Conference on Machine Learning and Cybernetics, pp. 781–783 (2003)

    Google Scholar 

  25. Banks, H.T., Burns, J.A., Cliff, E.M.: Parameter estimation and identification for systems with delay. SIAM J. Control Optim. 19, 791–828 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  26. Loxton, R., Teo, K.L., Rehbock, V.: An optimization approach to state-delay identification. IEEE Trans. Autom. Control 55, 2113–2119 (2010)

    Article  MathSciNet  Google Scholar 

  27. Chai, Q., Loxton, R., Teo, K.L., Yang, C.: A unified parameter identification method for nonlinear time-delay systems. J. Ind. Manag. Optim. 9, 471–486 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Chai, Q., Loxton, R., Teo, K.L., Yang, C.: A class of optimal state-delay control problems. Nonlinear Anal., Real World Appl. 14, 1536–1550 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  30. Ahmed, N.U.: Dynamic Systems and Control with Applications. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  31. Wong, K.H., Jennings, L.S., Benyah, F.: The control parametrization enhancing transform for constrained time-delayed optimal control problems. ANZIAM J. 43, E154–E185 (2002)

    MathSciNet  Google Scholar 

  32. Wu, C.Z., Teo, K.L., Li, R., Zhao, Y.: Optimal control of switched systems with time delay. Appl. Math. Lett. 19, 1062–1067 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Chai, Q., Loxton, R., Teo, K.L., Yang, C.H.: Time-delay estimation for nonlinear systems with piecewise-constant input. Appl. Math. Comput. 219, 9543–9560 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schittkowski, K.: NLPQLP; a Fortran Implementation of a Sequential Quadratic Programming Algorithm with Distributed and Non-Monotone Line Search. University of Bayreuth, Bayreuth (2007)

    Google Scholar 

  35. Liu, C.Y., Gong, Z.H., Feng, E.M., Yin, H.C.: Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture. J. Ind. Manag. Optim. 5, 835–850 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Xiu, Z.L., Song, B.H., Sun, L.H., Zeng, A.P.: Theoretical analysis of effects of metabolic overflow and time delay on the performance and dynamic behavior of a two-stage fermentation process. Biochem. Eng. J. 11, 101–109 (2002)

    Article  Google Scholar 

  37. Liu, C.Y., Gong, Z.H., Shen, B.Y., Feng, E.M.: Modelling and optimal control for a fed-batch fermentation process. Appl. Math. Model. 37, 695–706 (2013)

    Article  MathSciNet  Google Scholar 

  38. Mu, Y., Zhang, D.J., Teng, H., Wang, W., Xiu, Z.L.: Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparation. Biotechnol. Lett. 28, 1755–1759 (2006)

    Article  Google Scholar 

  39. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, New York (1980)

    Book  Google Scholar 

Download references

Acknowledgements

The first author is supported by the Natural Science Foundation for the Youth of China (Grant no. 11201267 and Grant no. 11001153), the Tian Yuan Special Funds of the National Natural Science Foundation of China (Grant no. 11126077) and the Shandong Province Natural Science Foundation of China (Grant no. ZR2010AQ016 and Grant no. ZR2011AL003). The second author is supported by the Natural Science Foundation of China (Grant no. 11350110208) and the Australian Research Council (Discovery Grant DP110100083). The third author is supported by the Australian Research Council (Discovery Grant DP110100083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chongyang Liu or Ryan Loxton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Loxton, R. & Teo, K.L. Optimal parameter selection for nonlinear multistage systems with time-delays. Comput Optim Appl 59, 285–306 (2014). https://doi.org/10.1007/s10589-013-9632-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9632-x

Keywords

Navigation