Skip to main content

Advertisement

Log in

Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Evolutionary Algorithms (EAs) are emerging as competitive and reliable techniques for several optimization tasks. Juxtapositioning their higher-level and implicit correspondence; it is provocative to query if one optimization algorithm can benefit from another by studying underlying similarities and dissimilarities. This paper establishes a clear and fundamental algorithmic linking between particle swarm optimization (PSO) algorithm and genetic algorithms (GAs). Specifically, we select the task of solving unimodal optimization problems, and demonstrate that key algorithmic features of an effective Generalized Generation Gap based Genetic Algorithm can be introduced into the PSO by leveraging this algorithmic linking while significantly enhance the PSO’s performance. However, the goal of this paper is not to solve unimodal problems, neither is to demonstrate that the modified PSO algorithm resembles a GA, but to highlight the concept of algorithmic linking in an attempt towards designing efficient optimization algorithms. We intend to emphasize that the evolutionary and other optimization researchers should direct more efforts in establishing equivalence between different genetic, evolutionary and other nature-inspired or non-traditional algorithms. In addition to achieving performance gains, such an exercise shall deepen the understanding and scope of various operators from different paradigms in Evolutionary Computation (EC) and other optimization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The source codes adopted in this paper are available at [33], or by e-mailing npdhye@gmail.com.

References

  1. Angeline, P.J.: Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In: Proceedings of the 7th International Conference on Evolutionary Programming 7, pp. 601–610 (1998)

    Google Scholar 

  2. Angeline, P.J.: Using selection to improve particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computation (1998)

    Google Scholar 

  3. Banks, A., Vincet, J., Anyakoha, C.: A review of particle swarm optimization. Part I: background and development. Nat. Comput. 6(4), 467–484 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barrera, J., Coello, C.A.C.: A Review of Particle Swarm Optimization Methods Used for Multimodal Optimization, vol. 248, pp. 9–37. Springer, Berlin (2009)

    Google Scholar 

  5. Beyer, H.G.: Toward a theory of evolution strategies: self-adaptation. Evol. Comput. 3(3), 311–347 (1995)

    Article  Google Scholar 

  6. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)

    Article  Google Scholar 

  7. Box, M.J.: A new method of constrained optimization and a comparison with other methods. Comput. J. 8(1), 42–52 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cavicchio, D.J.: Adaptive search using simulated evolution. Ph.D. thesis, Ann Arbor, MI, University of Michigan (1970)

  9. Clerc, M.: Particle Swarm Optimization. ISTE Ltd, UK/USA (2006)

    Book  MATH  Google Scholar 

  10. Clerc, M., Kennedy, J.: The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  11. Coello, C.A.C., Lechuga, M.S., MOPSO: a proposal for multiple objective particle swarm optimization. In: Congress on Evolutionary Computation, pp. 825–830. IEEE Press, New York (2002)

    Google Scholar 

  12. Deb, K.: Optimization for Engineering Design: Algorithms and Examples. Prentice Hall, New Delhi (1995)

    Google Scholar 

  13. Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter optimization. Evol. Comput. 10(4), 371–395 (2002)

    Article  Google Scholar 

  14. DeJong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, Ann Arbor, MI, University of Michigan (1975). Diss. Abstr. Int. 36(10), 5140B (University Microfilms No. 76-9381)

  15. Eberhart, R., Shi, Y.: Comparison between genetic algorithms and particle swarm optimization. In: Proceedings of the Seventh Annual Conference on Evolutionary Programming, pp. 611–619 (1998)

  16. Eberhart, R.C., Simpson, P., Dobbins, R.: Computational Intelligence PC Tools. AP Professional, San Diego (1996)

  17. Fogel, D.B., Fogel, L.J., Atmar, W., Fogel, G.B.: Hierarchic methods in evolutionary programming. In: Proceedings of the First Annual Conference on Evolutionary Programming, pp. 175–182 (1992)

    Google Scholar 

  18. Goldberg, D.E.: Genetic Algorithms for Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  19. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 312–317 (1996)

    Chapter  Google Scholar 

  20. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2000)

    Article  Google Scholar 

  21. Higashi, N., Iba, H.: Particle swarm optimization with Gaussian mutation. In: Proceedings of the IEEE Swarm Intelligence Symposium 2003, pp. 72–79 (2003)

    Chapter  Google Scholar 

  22. Holland, J.H.: Concerning efficient adaptive systems. In: Yovits, M.C., Jacobi, G.T., Goldstein, G.B. (eds.) Self-Organizing Systems, pp. 215–230. Spartan Press, Laggan (1962)

    Google Scholar 

  23. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Ann Arbor (1975)

    Google Scholar 

  24. Juang, C.F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(2), 997–1006 (2004)

    Article  Google Scholar 

  25. Kennedy, J.: The particle swarm: social adaptation of knowledge. In: IEEE International Conference on Evolutionary Computation, pp. 303–308 (1997)

    Google Scholar 

  26. Kennedy, J.: Bare bones particle swarm. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 80–87 (2003)

    Google Scholar 

  27. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of Conference on Evolutionary Computation (CEC), pp. 1942–1948 (1995)

    Google Scholar 

  28. Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  29. Lovbjerg, M., Rasmussen, T.K., Krink, T.: Hybrid particle swarm optimizer with breeding and subpopulations. In: Proceedings of GECCO, pp. 469–476 (2001)

    Google Scholar 

  30. Luus, R., Jaakola, T.H.I.: Optimization by direct search and systematic reduction of the size of search region. AIChE J. 19, 760–766 (1973)

    Article  Google Scholar 

  31. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simple, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

    Article  Google Scholar 

  32. Ozcan, E., Mohan, C.K.: Particle swarm optimization: surfing the waves. In: Proceedings of the Congress on Evolutionary Computation, pp. 6–9. IEEE Press, New York (1999)

    Google Scholar 

  33. Padhye, N.: PSO source codes. http://web.mit.edu/npdhye/www/Source-codes.html

  34. Padhye, N., Branke, J., Mostaghim, S.: Empirical comparison of MOPSO methods: guide selection and diversity. In: Proceedings of CEC, pp. 2516–2523 (2009)

    Google Scholar 

  35. Padhye, N., Mohan, C.K., Mehrotra, K.G., Varshney, P.: Sensor selection strategies for networks monitoring toxic chemical release. In: Proceedings of Sensor Networks Applications (SNA) (2009)

    Google Scholar 

  36. Padhye, N., Deb, K., Mittal, P.: Boundary handling methodologies in particle swarm optimization. In: Bansal, J.C., et al. (eds.) Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), 2012, vol. 201, pp. 287–298 (2013)

    Chapter  Google Scholar 

  37. Padhye, N., Bhardawaj, P., Deb, K.: Improving differential evolution through a unified approach. J. Glob. Optim. 55(4), 771–799 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  38. Pant, M., Thangaraj, R., Abraham, A.: A New PSO Algorithm with Crossover Operator for Global Optimization Problems, pp. 215–222. Springer, Berlin (2007)

    Google Scholar 

  39. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization and Intelligence: Advances and Applications. Information Science Publishing, Hershey (2010)

    Book  Google Scholar 

  40. Rao, S.S.: Genetic algorithmic approach for multiobjective optimization of structures. In: Proceedings of the ASME Annual Winter Meeting on Structures and Controls Optimization, vol. 38, pp. 29–38 (1993)

    Google Scholar 

  41. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 8(3), 240–255 (2004)

    Article  Google Scholar 

  42. Reklaitis, G.V., Ravindran, A., Ragsdell, K.M.: Engineering Optimization Methods and Applications. Wiley, New York (1983)

    Google Scholar 

  43. Reyes-Sierra, M., Coello, C.A.C.: Multi-objective particle swarm optimizers: a survey of the state-of-the art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)

    MathSciNet  Google Scholar 

  44. Rudolph, G.: Convergence of evolutionary algorithms in general search spaces. In: Proceedings of the Third IEEE Conference on Evolutionary Computation, pp. 50–54 (1996)

    Chapter  Google Scholar 

  45. Schwefel, H.P.: Evolution and Optimum Seeking. Wiley, New York (1995)

    Google Scholar 

  46. Shi, Y., Eberhart, R.: A modified particle swarm optimization. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)

    Google Scholar 

  47. Shi, Y., Eberhart, R.: Parameter selection in particle swarm optimization. In: Proceedings of the 7th International Conference on Evolutionary Programming VII, vol. 1447, pp. 591–600 (1998)

    Google Scholar 

  48. Storn, R., Price, K.: Differential evolution—a fast and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  49. Tawdross, P., Koenig, A.: Local parameters particle swarm optimization. In: Sixth International Conference on Hybrid Intelligent Systems. HIS ’06 (2006)

    Google Scholar 

  50. Zhang, W., Xie, X.: DEPSO: hybrid particle swarm with differential evolution operator. In: IEEE International Conference on Systems, Man and Cybernetics (SMCC), vol. 3410, pp. 3816–3821 (2003)

    Google Scholar 

Download references

Acknowledgements

The first author acknowledges the start-up grant provided by Department of Electrical and Computer Engineering and College of Engineering, Michigan State University, East Lansing during the course of this study. Second author acknowledges discussions with Professor C.K. Mohan during his visits at Syracuse University on Particle Swarm Optimization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyanmoy Deb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deb, K., Padhye, N. Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms. Comput Optim Appl 57, 761–794 (2014). https://doi.org/10.1007/s10589-013-9605-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9605-0

Keywords

Navigation