Skip to main content

Advertisement

Log in

Energy-saving traffic scheduling in backbone networks with software-defined networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The rapid development of communications networks facilitate our lives but bring severe energy consumption problems. As an emerging network structure, software-defined networking can realize flexible scheduling of network traffic demands. In this paper, we exploit the above feature and adopt the idea that is powering down unnecessary links and improving links bandwidth’s utilization to formulate an optimization problem. It can realize reducing network costs while satisfying traffic demands and network resources. We propose a heuristic algorithm based on the maximum bandwidth utilization of activated links to solve this optimization problem. It aims to minimize energy costs by improving link utilization and turning on network devices as few as possible. Besides, we propose to divide all networks in a library of test instances for Survivable fixed telecommunication Network Design into four categories according to the network complexity. Finally, we choose eight different sizes of networks to verify our algorithm. The results show that the proposed algorithm can realize energy-efficient and improve the energy-saving rate by 0.34–19.69% on average by improving the utilization of active links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Assefa, B.G., Ozkasap, O.: Link utility and traffic aware energy saving in software defined networks. In: 2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), IEEE, pp. 1–5 (2017)

  2. Assefa, B.G., Özkasap, Ö.: A survey of energy efficiency in sdn: software-based methods and optimization models. J. Netw. Comput. Appl. 137, 127–143 (2019)

    Article  Google Scholar 

  3. Awad, M.K., Neama, G., Rafique, Y.: The impact of practical network constraints on the performance of energy-aware routing schemes. In: 2015 IEEE International Conference on Service Operations and Logistics, and Informatics (soli), IEEE, pp. 77–81 (2015)

  4. Awad, M.K., Rafique, Y., M’Hallah, R.A.: Energy-aware routing for software-defined networks with discrete link rates: a benders decomposition-based heuristic approach. Sustain. Comput. Inform. Syst. 13(mar.), 31–41 (2017)

    Google Scholar 

  5. Ba, J., Wang, Y., Zhong, X., Feng, S., Qiu, X., Guo, S.: An sdn energy saving method based on topology switch and rerouting. In: NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium, IEEE, pp. 1–5 (2018)

  6. Cherian, A.A., Kumar, M.A., Mini, P.: Improving power efficiency in partially deployed software defined networks (sdn). In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), IEEE, pp. 1878–1881 (2017)

  7. Di Martino, C., Mendiratta, V., Thottan, M.: Resiliency challenges in accelerating carrier-grade networks with sdn. In: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W), IEEE, pp. 242–245 (2016)

  8. Feng, T., Bi, J., Wang, K.: Allocation and scheduling of network resource for multiple control applications in sdn. China Commun. 12(6), 85–95 (2015)

    Article  Google Scholar 

  9. Fernández-Fernández, A., Cervelló-Pastor, C., Ochoa-Aday, L.: Improved energy-aware routing algorithm in software-defined networks. In: 2016 IEEE 41st Conference on Local Computer Networks (LCN), IEEE, pp. 196–199 (2016)

  10. Gao, X., Xu, Z., Wang, H., Li, L., Wang, X.: Reduced cooling redundancy: a new security vulnerability in a hot data center. In: NDSS (2018)

  11. Hammadi, A., Mhamdi, L.: A survey on architectures and energy efficiency in data center networks. Comput. Commun. 40(2), 1–21 (2014)

    Article  Google Scholar 

  12. Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., McKeown, N.: Elastictree: saving energy in data center networks. NSDI 10, 249–264 (2010)

    Google Scholar 

  13. Hou, H., Jin, H., Liao, X., Zeng, D.: Multi-path routing for energy efficient mobile offloading in software defined networks. In: 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), IEEE, pp. 360–367 (2017)

  14. Jiang, H.P., Chuck, D., Chen, W.M.: Energy-aware data center networks. J. Netw. Comput. Appl. 68(C), 80–89 (2016)

    Article  Google Scholar 

  15. Kreutz, D., Ramos, F.M., Verissimo, P., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14–76 (2015)

    Article  Google Scholar 

  16. Lewis, F.L., Liu, D.: Reinforcement learning and approximate dynamic programming for feedback control, vol. 17. Wiley, New York (2013)

    Google Scholar 

  17. Li, D., Shang, Y., Chen, C.: Software defined green data center network with exclusive routing. In: IEEE INFOCOM 2014-IEEE Conference on Computer Communications, IEEE, pp. 1743–1751 (2014)

  18. Maaloul, R., Taktak, R., Chaari, L., Cousin, B.: Energy-aware routing in carrier-grade ethernet using sdn approach. IEEE Trans. Green Commun. Netw. 23, 844–858 (2018)

    Article  Google Scholar 

  19. Majumder, S., Saha, B., Anand, P., Kar, S., Pal, T.: Uncertainty based genetic algorithm with varying population for random fuzzy maximum flow problem. Expert Syst. 35(4), e12264 (2018)

    Article  Google Scholar 

  20. Majumder, S., Kar, M.B., Kar, S., Pal, T.: Uncertain programming models for multi-objective shortest path problem with uncertain parameters. Soft Comput. (2019). https://doi.org/10.1007/s00500-019-04423-3

    Article  MATH  Google Scholar 

  21. Mukherjee, A., Barma, P.S., Dutta, J., Panigrahi, G., Kar, S., Maiti, M.: A modified discrete antlion optimizer for the ring star problem with secondary sub-depots. Neural Comput. Appl. (2019a). https://doi.org/10.1007/s00521-019-04292-9

    Article  Google Scholar 

  22. Mukherjee, A., Panigrahi, G., Kar, S., Maiti, M.: Constrained covering solid travelling salesman problems in uncertain environment. J. Ambient Intell. Humaniz. Comput. 10(1), 125–141 (2019b)

    Article  Google Scholar 

  23. Neama, G.N., Awad, M.K.: An energy efficient integral routing algorithm for software-defined networks. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), IEEE, pp. 1–6 (2017)

  24. Nunes, B.A.A., Mendonca, M., Nguyen, X.N., Obraczka, K., Turletti, T.: A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun. Surv. Tutor. 16(3), 1617–1634 (2014)

    Article  Google Scholar 

  25. Özbek, B., Aydoğmuş, Y., Ulaş, A., Gorkemli, B., Ulusoy, K.: Energy aware routing and traffic management for software defined networks. In: 2016 IEEE NetSoft Conference and Workshops (NetSoft), IEEE, pp. 73–77 (2016)

  26. Qin, C., Zhang, H., Luo, Y.: Online optimal tracking control of continuous-time linear systems with unknown dynamics by using adaptive dynamic programming. Int. J. Control 87(5), 1000–1009 (2014a)

    Article  MathSciNet  Google Scholar 

  27. Qin, C., Zhang, H., Luo, Y., Wang, B.: Finite horizon optimal control of non-linear discrete-time switched systems using adaptive dynamic programming with \(\varepsilon\)-error bound. Int. J. Syst. Sci. 45(8), 1683–1693 (2014b)

    Article  MathSciNet  Google Scholar 

  28. Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., Maggs, B.: Cutting the electric bill for internet-scale systems. In: ACM SIGCOMM Computer Communication review, ACM, pp. 123–134 (2009)

  29. Rafique, Y., Awad, M.K., Neama, G.: A benchmark implementation for evaluating the performance of power-aware routing algorithms in practical software-defined networks. In: 2017 Fourth International Conference on Software Defined Systems (SDS), IEEE, pp. 118–124 (2017)

  30. Tajiki, M.M., Salsano, S., Chiaraviglio, L., Shojafar, M., Akbari, B.: Joint energy efficient and qos-aware path allocation and vnf placement for service function chaining. IEEE Trans. Netw. Serv. Manag. 16(1), 374–388 (2018)

    Article  Google Scholar 

  31. Tajiki, M.M., Shojafar, M., Akbari, B., Salsano, S., Conti, M., Singhal, M.: Joint failure recovery, fault prevention, and energy-efficient resource management for real-time sfc in fog-supported sdn. Comput. Netw. 162, 106850 (2019)

    Article  Google Scholar 

  32. Wang, X., Yao, Y., Wang, X., Lu, K., Cao, Q.: Carpo: correlation-aware power optimization in data center networks. In: 2012 Proceedings IEEE INFOCOM, IEEE, pp. 1125–1133 (2012)

  33. Xu, G., Dai, B., Huang, B., Yang, J.: Bandwidth-aware energy efficient routing with sdn in data center networks. In: 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems, IEEE, pp. 766–771 (2015)

  34. Xu, M., Shang, Y., Li, D., Wang, X.: Greening data center networks with throughput-guaranteed power-aware routing. Comput. Netw. 57(15), 2880–2899 (2013)

    Article  Google Scholar 

  35. Yamanaka, N., Takeshita, H., Okamoto, S., Sato, T., Zhang, S.: Energy efficiency of future central and/or linked distributed function network using optical technologies. In: 2014 19th European Conference on Networks and Optical Communications-(NOC), IEEE, pp. 97–101 (2014)

  36. Yeganeh, S.H., Tootoonchian, A., Ganjali, Y.: On scalability of software-defined networking. IEEE Commun. Mag. 51(2), 136–141 (2013)

    Article  Google Scholar 

  37. Yu, B., Han, Y., Wen, X., Chen, X., Xu, Z.: An energy-aware algorithm for optimizing resource allocation in software defined network. In: 2016 IEEE Global Communications Conference (GLOBECOM), IEEE, pp. 1–7 (2016)

  38. Zeng, D., Yang, G., Gu, L., Guo, S., Yao, H.: Joint optimization on switch activation and flow routing towards energy efficient software defined data center networks. In: 2016 IEEE International Conference on Communications (ICC), IEEE, pp. 1–6 (2016)

  39. Zeng, Y., Guo, S., Liu, G.: Comprehensive link sharing avoidance and switch aggregation for software-defined data center networks. Future Gener. Comput. Syst. 91, 25–36 (2019)

    Article  Google Scholar 

  40. Zhang, H., Wei, Q., Luo, Y.: A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy hdp iteration algorithm. IEEE Trans. Syst. Man Cybern. Part B 38(4), 937–942 (2008)

    Article  Google Scholar 

  41. Zhang, H., Qin, C., Luo, Y.: Neural-network-based constrained optimal control scheme for discrete-time switched nonlinear system using dual heuristic programming. IEEE Trans. Autom. Sci. Eng. 11(3), 839–849 (2014)

    Article  Google Scholar 

  42. Zhu, H., Liao, X., de Laat, C., Grosso, P.: Joint flow routing-scheduling for energy efficient software defined data center networks: a prototype of energy-aware network management platform. J. Netw. Comput. Appl. 63, 110–124 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xieping Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Deng, S., Lu, Z. et al. Energy-saving traffic scheduling in backbone networks with software-defined networks. Cluster Comput 24, 279–292 (2021). https://doi.org/10.1007/s10586-020-03102-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-020-03102-5

Keywords

Navigation