Skip to main content
Log in

Serious games for the human behaviour analysis in emergency evacuation scenarios

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

This paper describes an experiment designed to elicit human behaviour when facing the urgent need of exiting an unknown building. This work is part of a larger effort to devise the methodological approach underlying the implementation of simulation of pedestrians and elicitation of their emergent dynamics, an experimental framework coined SPEED. To validate our experimental setup, a group of 16 experts on fire safety, emergency planning and building evacuation were consulted. The experts were solicited to answer a questionnaire, rating their gaming experiences and validating the questions in the form to be presented to subjects. Their comments were valuable inputs used in the development of the experiment described in this paper. A sample of 62 subjects was then used to test our approach, which consists in having the subjects answering a questionnaire and later on playing a Serious Game resorting to the Unity3D game engine. Some specific scenarios were carefully designed and presented to subjects, both in the questionnaire and in the game environment to maintain consistency of answers. Preliminary results are promising, showing that the challenge made players think about the various situations that might happen when facing an emergency. They are also implied to reason on their stream of decisions, such as which direction to take considering the environment and some adverse situations, such as smoke, fire and people running on the opposite direction of the emergency signage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Helbing, D., Farkas, I., Molnár, P.: T. Vicsek. Simulation of pedestrian crowds in normal and evacuation situations, In: Schreckenberg, M., Sharma, S. (eds.) Pedestrian and Evacuation Dynamics, vol. 21, pp. 21–58. Springer, Berlin (2002)

  2. Cordeiro, E., Coelho, A.L., Rossetti, R.J.F., Almeida, J.E.: 2011 Fire and Evacuation Modeling Technical Conference, Baltimore, Maryland, 15–16 August 2011

  3. Almeida, J., Rosseti, R., Coelho, A.: Crowd simulation modeling applied to emergency and evacuation simulations using multi-agent systems. In: Sousa, A.A., Oliveira, E. (eds.) DSIE11—6th Doctoral Symposium on Informatics Engineering, pp. 93–104. Faculdade de Engenharia da Universidade do Porto, Engineering Faculty of Porto University, Porto (2011)

  4. Pauls, J.: The SFPE Handbook of Fire Protection Engineering. Movement of Peoplem, 2nd edn, pp. 3–263; 3–285. Society of Fire Protection Engineers, Bethesda (1995)

  5. Almeida, J.E., Kokkinogenis, Z., Rossetti, R.J.F.: NetLogo implementation of an evacuation scenario. In: Fourth Workshop on Intelligent Systems and Applications (WISA2012), Madrid, Spain (2012)

  6. Timmermans, H.: Pedestrian Behavior: Models, Data Collection and Applications. Emerald Group Publishing Limited, Bingley (2009)

    Book  Google Scholar 

  7. Lord, J., Meacham, B., Moore, A., Fahy, R., Proulx, G.: Guide for evaluating the predictive capabilities of computer egress models, pp. 06–886. Technical report, NIST Report GCR (2005)

  8. Kuligowski, E.D.: The process of human behavior in fires. Technical report, National Institute of Standards and Technology (2009)

  9. Kuligowski, E.D., Peacock, R., Hoskins, B.L.: A Review of Building Evacuation Models, 2nd edn. Technical report, National Institute of Standards And Technology (2010)

  10. Pelechano, N., Allbeck, J.: Comparison of crowd simulation for building evacuation and an alternative approach. In: Metaxas, D., Popovic, J. (eds.) Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2007). ACM Association for Computing Machinery, Inc, New York(2007)

  11. Ronchi, E., Kuligowski, E.D., Reneke, P.A., Peacock, R.D., Nilsson, D.: The process of verification and validation of building fire evacuation models NIST technical note 1822. Technical report, NIST - National Institute of Standards and Technology (2013)

  12. Sime, J.: Crowd psychology and engineering. Saf. Sci. 21(March 1993), 1–14 (1995)

    Article  Google Scholar 

  13. Silva, J., Almeida, J.E., Rossetti, R.J.F., Coelho, A.: Gamifying evacuation drills. In: Iberian Conference on Information Systems and Technologies, CISTI, Lisbon (2013)

  14. Carattin, E., Brannigan, V.: Science or science fiction? The use of human behavioral models in fire safety regulation. In: Thirteenth International Conference. Interscience Comms, pp. 553–558. London (2013)

  15. Chittaro, L., Ranon, R.: Serious games for training occupants of a building in personal fire safety skills, In: 2009 Conference in Games and Virtual Worlds for Serious Applications, pp. 76–83 (2009). doi:10.1109/VS-GAMES.2009.8

  16. Smith, S.P., Trenholme, D.: Rapid prototyping a virtual fire drill environment using computer game technology. Fire Saf. J. 44(4), 559–569 (2009). doi:10.1016/j.firesaf.2008.11.004

    Article  Google Scholar 

  17. Kobes, M., Oberijé, N., Morsche, K.G.T.: Serious gaming for behavioural assessment and research in case of emergency. An evaluation of experiments in virtual reality. In: SimTecT 2009 Simulation—Concepts, Capability and Technology, Adelaide (2009)

  18. Cordeiro, E., Coelho, A.L., Rossetti, R.J.F., Almeida, J.E.: Human behavior under fire situations: a case study in the Portuguese Society. In: Advanced Research Workshop: Evacuation and Human Behavior in Emergency Situations (GIDAI, pp. 63–80. Universidad de Cantabria, Santander (2011)

  19. Rossetti, R.J.F., Almeida, J.E., Kokkinogenis, Z., Gonçalves, J.: Playing transportation seriously: applications of serious games to artificial transportation systems. IEEE Intell. Syst. 28(4), 107–112 (2013)

  20. Kobes, M., Helsloot, I., Vries, B.D., Oberijé, N., Rosmuller, N.: Fire response performance in a hotel. Behavioural research. In: Interflam 2007—11th International Fire Science And Engineering Conference, vol. 2, pp. 1429–1434 (2007)

  21. Levin, B.C., Kuligowski, E.D.: Inhalation Toxicology, 2nd edn, pp. 205–226. CRC Press, Boca Raton (2005)

    Google Scholar 

  22. Jeon, G., Hong, W.: Toxicology of fire and smoke. J. Asian Archit. Build. Eng. 8(2), 415–422 (2009). doi:10.3130/jaabe.8.415

    Article  Google Scholar 

  23. Averill, J.D., Mileti, D.S.: World Trade Center disaster occupant behavior, egress, and emergency communications. Technical report, Federal Building and Fire Safety Investigation of the World Trade Center Disaster (2005)

  24. Hamzi, R., Londiche, H., Bourmada, N.: Fire-LCA model for environmental decision-making. Chem. Eng. Res. Des. 86(10), 1161–1166 (2008). doi:10.1016/j.cherd.2008.05.004

    Article  Google Scholar 

  25. Fruin, J.J.: The causes and prevention of crowd disasters. In: First International Conference on Engineering for Crowd Safety, pp. 1–10. Elsevier, London (1993)

  26. Kimura, M., Sime, J.D.: Exit choice behaviour during the evacuation of two lecture theatres. Fire Saf. Sci. 2, 541–550 (1989). doi:10.3801/IAFSS.FSS.2-541

    Article  Google Scholar 

  27. Klüpfel, H., Meyer-König, T., Schreckenberg, M.: Empirical data on an evacuation exercise in a movie theater. Fire Saf. J. 20, 2001 (2001)

    Google Scholar 

  28. Teknomo, K., Bauer, D., Matyus, T.: Pedestrian route choice self-organization. In: 3rd international Symposium on Transport Simulation. Queensland (2008)

  29. Perez, G.J., Tapang, G., Lim, M., Saloma, C.: Streaming, disruptive interference and power-law behavior in the exit dynamics of conÿned pedestrians. Physica A 312, 609–618 (2002)

    Article  MATH  Google Scholar 

  30. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)

    Article  Google Scholar 

  31. Kobes, M., Helsloot, I., de Vries, B., Post, J.: Exit choice, (pre-)movement time and (pre-)evacuation behaviour in hotel fire evacuation. Behavioural analysis and validation of the use of serious gaming in experimental research. Proc. Eng. 3, 37–51 (2010). doi:10.1016/j.proeng.2010.07.006

    Article  Google Scholar 

  32. Hoogendoorn, S., Bovy, P.: Pedestrian route-choice and activity scheduling theory and models. Transp. Res. B 38(2), 169–190 (2004). doi:10.1016/S0191-2615(03)00007-9

    Article  Google Scholar 

  33. Kobes, M., Helsloot, I., de Vries, B., Post, J.G., Oberijé, N., Groenewegen, K.: Way finding during fire evacuation; an analysis of unannounced fire drills in a hotel at night. Build. Environ. 45(3), 537–548 (2010). doi:10.1016/j.buildenv.2009.07.004

    Article  Google Scholar 

  34. Kholshevnikov, V., Shields, T., Boyce, K., Samoshin, D.: Recent developments in pedestrian flow theory and research in Russia. Fire Saf. J. 43(2), 108–118 (2008). doi:10.1016/j.firesaf.2007.05.005

    Article  Google Scholar 

  35. Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. USA 108(17), 6884–6888 (2011). doi:10.1073/pnas.1016507108

    Article  Google Scholar 

  36. Moussaïd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.: Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc. R. Soc. Biol Sci. 276(1668), 2755–2762 (2009). doi:10.1098/rspb.2009.0405

    Article  Google Scholar 

  37. Kuligowski, E.D.: Modeling Human Behavior During Building Fires NIST Technical Note 1619. Technical report, National Institute of Standards and Technology (2008)

  38. Kuligowski, E.: Predicting human behavior during fires. Fire Technol. (2011). doi:10.1007/s10694-011-0245-6

  39. Kuligowski, E.: Predicting human behavior during fires. Fire Technol. 49(1), 101–120 (2013). doi:10.1007/s10694-011-0245-6

    Article  Google Scholar 

  40. Ji, Q., Gao, C.: Simulating Crowd Evacuation with a Leader-Follower Model. IJCSES Int. J. Comput. Sci. Eng. Syst. 1(4), 249–252 (2007)

    MATH  Google Scholar 

  41. Pelechano, N., Badler, N.: Modeling crowd and trained leader behavior during building evacuation. Comput. Graph. Appl. 26(6), 80–86 (2006)

    Article  Google Scholar 

  42. Hall, J.R.: On people and chance: the “hard” facts about the “soft” branches of fire safety science. Fire Saf. Sci. 6, 23–40 (2000). doi:10.3801/IAFSS.FSS.6-23

    Article  Google Scholar 

  43. Leach, J.: Why people ’freeze’ in an emergency: temporal and cognitive constraints on survival responses. Aviat. Space Environ. Med. 75(6), 539–542 (2004)

    Google Scholar 

  44. Braglia, M., Castellano, D., Gabbrielli, R.: A novel game theory based exit selection model in emergency conditions. Adv. complex Sys. 16, 1350018 (2013). doi:10.1142/S0219525913500185

    Article  MathSciNet  Google Scholar 

  45. Xie, H.: Investigation into the interaction of people with signage systems and its implementation within evacuation models. Ph.D. thesis, University of Greenwich (2011)

  46. Kingsley, Z.G.: Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology. Addison-Wesley Press, Cambridge (1949)

    Google Scholar 

  47. Helbing, D., Molnár, P. , Farkas, I.J., Bolay, K.: Self-organizing pedestrian movement. Environ. Plan. B 28(3), 361–383 (2001). doi:10.1068/b2697. http://www.envplan.com/abstract.cgi?id=b2697

  48. Galea, E.: Evacuation and pedestrian dynamics guest editorial 21st century grand challenges in evacuation and pedestrian dynamics. Saf. Sci. 50, 1653–1654 (2012)

    Article  Google Scholar 

  49. Xi, M., Smith, S.P.: Simulating cooperative fire evacuation training in a virtual environment using gaming technology. In: 2014 IEEE Virtual Reality (VR) (IEEE, 2014), pp. 139–140 (2014). doi:10.1109/VR.2014.6802090

  50. Neumann, J.V.: Theory of Self-reproducing Automata, Theory of Self-reproducing Automata. University of Illinois Press, Urbana (1966). doi:10.2307/2005041

    Google Scholar 

  51. Yuan, W., Tan, K.H.: An evacuation model using cellular automata. Physica A 384(2), 549–566 (2007). doi:10.1016/j.physa.2007.05.055

    Article  Google Scholar 

  52. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  53. Okazaki, S., Matsushita, S.: A study of simulation model for pedestrian movement. In: First International Conference on Engineering for Crowd Safety, vol. 1, pp. 271–280. Elsevier, London (1993)

  54. Santos, G., Aguirre, B.E.: A critical review of emergency evacuation. Crit. Rev. 25, 25–50 (2004)

    Google Scholar 

  55. Pan, X., Han, C.S., Dauber, K., Law, K.H.: A multi-agent based framework for the simulation of human and social behaviors during emergency evacuations, Ai Soc. 22(2), 113–132 (2007). doi:10.1007/s00146-007-0126-1. http://www.springerlink.com/index/10.1007/s00146-007-0126-1

  56. Castle, C.J.E.: Guidelines for Assessing Pedestrian Evacuation Software Applications. Centre for Advanced Spatial Analysis (UCL), London (2007). doi:10.1103/PhysRevE.78.016110

    Google Scholar 

  57. Aguiar, F.: Crowd simulation applied to emergency and evacuation situations. Ph.D. thesis, in Portuguese, Master Dissertation, Engineering Faculty of Porto University, Porto (2010)

  58. Axelrod, R.: Advancing the art of simulation in the social sciences. Jpn. J. Manag. Inf. Syst. 12, 1–19 (2013)

    Google Scholar 

  59. Kin, W., Chan, V., Son, Y.J., Macal, C.M.: Agent-based simulation tutorial - simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation. In: Johansson, B., Jain, S., Montoya-Torres, J., Hugan, J., Yücesan, E. (eds.) Winter Simulation Conferencepp, pp. 135–150. 2010 (2010)

  60. Gwynne, S., Galea, E., Owen, M., Lawrence, P., Filippidis, L.: A review of the methodologies used in the computer simulation of evacuation from the built environment. Build. Environ. 34(6), 741–749 (1999). doi:10.1016/S0360-1323(98)00057-2

    Article  Google Scholar 

  61. Levin, B.M.: EXITT—a simulation model of occupant decisions and actions in residential fires. Fire Saf. Sci. 2, 561–570 (1989). doi:10.3801/IAFSS.FSS.2-561

    Article  Google Scholar 

  62. Fahy, R.F.: EXIT89: an evacuation model for high- rise buildings. Fire Saf. Sci. 3, 815–823 (1991). doi:10.3801/IAFSS.FSS.3-815

    Article  Google Scholar 

  63. Thompson, P.A., Marchant, E.W.: Simulex, developing new computer modelling techniques for evaluation. Fire Saf. Sci. 4, 613–624 (1994). doi:10.3801/IAFSS.FSS.4-613

    Article  Google Scholar 

  64. Poon, L.S.: EvacSim: a simulation model of occupants with behavioural attributes in emergency evacuation of high-rise building fires. Fire Saf. Sci. 4, 681–692 (1994). doi:10.3801/IAFSS.FSS.4-681

    Article  Google Scholar 

  65. Kady, R.A., Gwynne, S., Davis, J.: The effect of occupant characteristics on crawling speed in evacuation. In: Human Behaviour in Fire 2009, vol. 2, pp. 471–480. Interscience Communications Ltd., Robinson College, Cambridge (2009)

  66. Haron, F., Alginahi, Y., Kabir, M.N., Mohamed, A.I.: Software evaluation for crowd evacuation-case study: Al-Masjid An-Nabawi. Int. J. Comput. Sci. Issues 9(6), 128–134 (2012)

    Google Scholar 

  67. Ronchi, E., Kuligowski, E.D., Nilsson, D., Peacock, R.D., Reneke, P.A.: Assessing the verification and validation of building fire evacuation models. Fire Technol. (2014). doi:10.1007/s10694-014-0432-3

  68. Abt, C.C.: Serious Games. Vicking Press, New York (1970)

    Google Scholar 

  69. Silva, J.F., Almeida, J.E., Rossetti, R.J.F., Coelho, A.L.: A Serious games for evacuation training. In: IEEE 2nd International Conference on Serious Games and Applications for Health, p. 2013. SeGAH: Vilamoura, Palgarve: Portugal (2013)

  70. Susi, T., Johannesson, M., Backlund, P.: Serious gamesAn overview. Technical report of School of Humanities and Informatics University of Skövde, Sweden (2007)

  71. Chen, S., Michael, D.: Proof of learning: Assessment in serious games. Retrieved October (2005)

  72. Caird-Daley, A.C.U., Harris, D.C.U.: Training decision making using serious games. Technical report, Human Factors Integration Defence Technology Centre (2007). http://www.hfidtc.com/research/training/training-reports/phase-2/2-4-6-1-1-training-decision-making.pdf

  73. Kirriemuir, J., McFarlane, A.: Literature Review in Games and Learning. Future Lab Series. Report 8 (2004)

  74. de Freitas, S.I.: Using games and simulations for supporting learning. Learn. Media Technol. 31(4), 343–358 (2006). doi:10.1080/17439880601021967

    Article  Google Scholar 

  75. Loh, C.S., Anantachai, A., Byun, J., Lenox, J.: Assessing what players learned in serious games: in situ data collection, information trails, and quantitative analysis. In: Mehdi, Q. (ed.) 10th International Conference on Computer Games: AI, Animation, Mobile, Educational & Serious Games (CGAMES 2007), pp. 25–28. Louisville (2007)

  76. Cooke, N.: Varieties of knowledge elicitation techniques. Int. J. Hum Comput Stud. 41, 801–849 (1994)

    Article  MATH  Google Scholar 

  77. Chen, L., Pu, P.: Survey of preference elicitation methods. Technical report, Human Computer Interaction Group. Ecole Politechnique Federale de Lausanne (EPFL) (2004). doi:10.5075/epfl-thesis-3014

  78. Crandall, B.: A comparative study of think-aloud and critical decision knowledge elicitation methods. ACM SIGART Bull. 108, 144–146 (1989). doi:10.1145/63266.63288

    Article  Google Scholar 

  79. Brown, B.B.: Delphi process: A methodology used for the elicitation of opinions of experts. Technical report of The RAND Corporation, Santa Monica, California (1968)

  80. Lawson, G.: Predicting human behaviour in emergencies. Ph.D. thesis, University of Nottingham (2011)

  81. Ribeiro, J.A., Almeida, J.E., Rossetti, R.J.F., Coelho, A., Coelho, A.L.: Using serious games to train evacuation behaviour. In: CISTI 2012–2017 Conferencia Ibérica de Sistemas y Tecnologías de Información, pp. 771–776. Madrid (2012)

  82. Ribeiro, J.A., Almeida, J.E., Rossetti, R.J.F., Coelho, A., Coelho, A.L.: Towards a serious games evacuation simulator. In: Troitzch, K.G., Möhring, M., Lotzmann, U. (eds.) 26th European Conference on Modelling and Simulation ECMS 2012, pp. 697–702. ECMS2012, Koblenz (2012)

  83. Almeida, J., Rossetti, R., Coelho, A.: Mapping 3D character location for tracking players’ behaviour. In: Iberian Conference on Information Systems and Technologies, CISTI, Lisbon (2013)

  84. Silva, J.F., Almeida, J.E., Rossetti, R.J.F., Coelho, A.L.: Gamifying evacuation drills. In: Third Iberian Workshop on Serious Games and Meaningful Play (SGaMePlay 2013), Lisbon (2013)

  85. Vasconcelos, G., Petry, M., Almeida, J.E., Rossetti, R.J.F., Coelho, A.L.: Using UWB for human trajectory extraction. In: 24th European Modeling and Simulation Symposium—EMSS 2012, Vienna (2012), Helbing (2001)

  86. Almeida, J.E., Tiago, J.A., Neto, P., Faria, B.M., Rossetti, R.J.F., Coelho, A.L.: Serious games for the elicitation of way-finding behaviours in emergency situations. In: CISTI 2014–9a Conferencia Ibérica de Sistemas y Tecnologías de Información, Barcelona (2014)

  87. Goldstone, W.: Unity Game Development Essentials. Packt Publishing, Birmingham (2009)

    Google Scholar 

  88. Navarro, A., Pradilla, J.V., Rios, O.: Open source 3d game engines for serious games modeling. In: Alexandru (, C. (ed.) Modeling and Simulation in Engineering, pp. 145–158. Hindawi Publishing Corporation, Cairo (2012). doi:10.5772/29744

    Google Scholar 

  89. Creighton, R.H.: Unity 3D Game Development by Example (2010)

  90. Prada, R., Paiva, A.: Teaming up humans with autonomous synthetic characters. Artif. Intell. 173(1), 80–103 (2009). doi:10.1016/j.artint.2008.08.006

    Article  Google Scholar 

  91. Almeida, J.E., Rossetti, R.J.F., Faria, B.M., Jacob, J.A.T., Coelho, A.L.: Towards a methodology for human behaviour elicitation: preliminary results. In: Affenzeller, B., Jiménez, L., Merkuryev, Z. (eds.) The 26th European Modeling and Simulation Symposium (EMSS 2014)pp. 220–228. Bordeaux (2014)

  92. Ribeiro, J.A.P.M.: Serious games applied to pedestrian modelling and simulation. Ph.D. thesis, Master Dissertation, Engineering Faculty of Porto University, Porto (2012)

  93. Cattell, H., Mead, A.: The sixteen personality factor questionnaire (16PF). In: Boyle, G.J., Matthews, G., Saklofske, D. (eds.) The SAGE handbook of personality Theory and Assesment, Chap. 7, vols. 1–2, pp. 135–159. SAGE Publications Ltd, London (2008)

Download references

Acknowledgements

This project has been partially supported by FCT (Fundação para a Ciência e a Tecnologia), the Portuguese Agency for R&D, under grant SFRH / BD / 72946 / 2010. Authors wish to thank all the experts that gave their insight, comments and valuable input into the scenarios and questions; due to space limitations it is not possible to list individually their names and expertise. We also wish to thank the volunteers that participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosaldo J. F. Rossetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, J.E., Rossetti, R.J.F., Jacob, J.T.P.N. et al. Serious games for the human behaviour analysis in emergency evacuation scenarios. Cluster Comput 20, 707–720 (2017). https://doi.org/10.1007/s10586-017-0765-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0765-z

Keywords

Navigation