Skip to main content

Advertisement

Log in

CD44 in Bone Metastasis Development: A Key Player in the Fate Decisions of the Invading Cells?

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

A participant in key developmental processes, the adhesion glycoprotein CD44 is also expressed in several types of malignancies and can promote metastasis. In addition, the expression of CD44 isoforms in different types of cancer such as prostate and breast cancers may facilitate bone metastases by enhancing tumorigenicity, osteomimicry, cell migration, homing to bone, and anchorage within the bone specialized domains. Moreover, there is evidence that the CD44-ICD fragments in breast cancer cells may promote the cells’ osteolytic nature. Yet the mechanisms by which CD44 and its downstream effectors promote the establishment of these cells within the bone are not fully elucidated. In this review, we summarize the current data on the roles played by CD44 in cancer progression and bone metastasis and the possible effects of its interaction with the different components of the bone marrow milieu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Isacke CM, Yarwood H (2002) The hyaluronan receptor, CD44. Int J Biochem Cell Biol 34:718–721

    Article  CAS  PubMed  Google Scholar 

  2. Naor D, Sionov RV, Ish-Shalom D (1997) CD44: structure, function and association with the malignant process. Adv Cancer Res 71:241–319

    Article  CAS  PubMed  Google Scholar 

  3. Chen C, Zhao S, Karnad A, Freeman JW (2018) The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol 11:1–23

    Article  Google Scholar 

  4. Draffin JE, Hill A, Johnston PG, Waugh DJ (2003) CD44 expression on prostate cancer cells correlates with adhesion to bone marrow endothelial cells. Clin Cancer Res 9:6181S

    Google Scholar 

  5. Draffin JE, McFarlane S, Hill A, Johnston PG, Waugh DJ (2004) CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64:5702–5711

    Article  CAS  PubMed  Google Scholar 

  6. Adjei IM, Temples MN, Brown SB, Sharma B (2018) Targeted nanomedicine to treat bone metastasis. Pharmaceutics 10:205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hiraga T, Ito S, Nakamura H (2013) Cancer stem–like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and Hyaluronan Production. Cancer Res 73:4112–4122

    Article  CAS  PubMed  Google Scholar 

  8. Hill A, McFarlane S, Johnston PG, Waugh DJ (2006) The emerging role of CD44 in regulating skeletal micrometastasis. Cancer Lett 237:1–9

    Article  CAS  PubMed  Google Scholar 

  9. Rucci N, Teti A (2018) Osteomimicry: how the seed grows in the soil. Calcif Tissue Int 102:131–140

    Article  CAS  PubMed  Google Scholar 

  10. G van der Pluijm (2011) Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone 48:37–43

    Article  PubMed  Google Scholar 

  11. Ouhtit A, Rizeq B, Saleh HA, Rahman MM, Zayed H (2018) Novel CD44-downstream signaling pathways mediating breast tumor invasion. Int J Biol Sci 14:1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jackson DG, Buckley J, Bell JI (1992) Multiple variants of the human lymphocyte homing receptor CD44 generated by insertions at a single site in the extracellular domain. J Biol Chem 267:4732–4739

    Article  CAS  PubMed  Google Scholar 

  13. NS Basakran (2015) CD44 as a potential diagnostic tumor marker. Saudi Med J 36:273

    Article  Google Scholar 

  14. KA Iczkowski (2011) Cell adhesion molecule CD44: its functional roles in prostate cancer. Am J translational Res 3:1

    Google Scholar 

  15. Sacks JD, Barbolina MV (2015) Expression and function of CD44 in epithelial ovarian carcinoma. Biomolecules 5:3051–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Orian-Rousseau V (2015) CD44 acts as a signaling platform controlling tumor progression and metastasis. Front Immunol 6:154

    Article  PubMed  PubMed Central  Google Scholar 

  17. Williams K, Motiani K, Giridhar PV, Kasper S (2013) CD44 integrates signaling in normal stem cell, cancer stem cell and (pre) metastatic niches. Exp Biol Med 238:324–338

    Article  CAS  Google Scholar 

  18. Senbanjo LT, Chellaiah MA (2017) CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front cell Dev biology 5:18

    Article  Google Scholar 

  19. Tsukita S, Oishi K, Sato N, Sagara J, Kawai A, Tsukita S (1994) ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol 126:391–401

    Article  CAS  PubMed  Google Scholar 

  20. Yonemura S, Hirao M, Doi Y, Takahashi N, Kondo T, Tsukita S et al (1998) Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol 140:885–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Greenfield B, Wang W, Marquardt H, Piepkorn M, Wolff EA, Aruffo A et al (1999) Characterization of the heparan sulfate and chondroitin sulfate assembly sites in CD44. J Biol Chem 274:2511–2517

    Article  CAS  PubMed  Google Scholar 

  22. Gasbarri A, Del Prete F, Girnita L, Martegani MP, Natali PG, Bartolazzi A (2003) CD44s adhesive function spontaneous and PMA-inducible CD44 cleavage are regulated at post-translational level in cells of melanocytic lineage. Melanoma Res 13:325–337

    Article  CAS  PubMed  Google Scholar 

  23. Bennett KL, Jackson DG, Simon JC, Tanczos E, Peach R, Modrell B et al (1995) CD44 isoforms containing exon V3 are responsible for the presentation of heparin-binding growth factor. J Cell Biol 128:687–698

    Article  CAS  PubMed  Google Scholar 

  24. Orian-Rousseau V (2015) CD44 acts as a signaling platform controlling tumor progression and metastasis. Front Immunol 6:154

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jalkanen S, Jalkanen M (1992) Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol 116:817–825

    Article  CAS  PubMed  Google Scholar 

  26. Toyama-Sorimachi N, Miyasaka M (1994) A novel ligand for CD44 is sulfated proteoglycan. Int Immunol 6:655–660

    Article  CAS  PubMed  Google Scholar 

  27. Weber GF, Ashkar S, Glimcher MJ, Cantor H (1996) Receptor-ligand interaction between CD44 and osteopontin (Eta-1), Science. 271:509–512

  28. Dicker KT, Gurski LA, Pradhan-Bhatt S, Witt RL, Farach-Carson MC, Jia X (2014) Hyaluronan: a simple polysaccharide with diverse biological functions. Acta Biomater 10:1558–1570

    Article  CAS  PubMed  Google Scholar 

  29. Borland G, Ross JA, Guy K (1998) Forms and functions of CD44. Immunology 93:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Astachov L, Vago R, Aviv M, Nevo Z (2011) Hyaluronan and mesenchymal stem cells: from germ layer to cartilage and bone. Front Bioscience-Landmark 16:261–276

    Article  CAS  Google Scholar 

  31. Toyokawa K, Harayama H, Miyake M (2005) Exogenous hyaluronic acid enhances porcine parthenogenetic embryo development in vitro possibly mediated by CD44, Theriogenology. 64:378–392

  32. BP Toole (1998) Hyaluronan in morphogenesis and tissue remodeling. Glycoforum 2:A9

    Google Scholar 

  33. Kosaki R, Watanabe K, Yamaguchi Y (1999) Overproduction of hyaluronan by expression of the hyaluronan synthase Has2 enhances anchorage-independent growth and tumorigenicity. Cancer Res 59:1141–1145

    CAS  PubMed  Google Scholar 

  34. Alaniz L, Cabrera PV, Blanco G, Ernst G, Rimoldi G, Alvarez E et al (2002) Interaction of CD44 with different forms of hyaluronic acid. Its role in adhesion and migration of tumor cells. Cell Communication & Adhesion 9:117–130

    Article  CAS  Google Scholar 

  35. Guo Q, Yang C, Gao F (2021) The state of CD44 activation in cancer progression and therapeutic targeting,The FEBS Journal.

  36. Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR et al (2011) Hyaluronan–CD44 interactions as potential targets for cancer therapy. FEBS J 278:1429–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang H (2018) Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors 18:3249

    Article  PubMed  PubMed Central  Google Scholar 

  38. John A, Tuszynski G (2001) The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 7:14–23

    Article  CAS  PubMed  Google Scholar 

  39. Gupta A, Cao W, Sadashivaiah K, Chen W, Schneider A, Chellaiah MA (2013) Promising noninvasive cellular phenotype in prostate cancer cells knockdown of matrix metalloproteinase 9, The Scientific World Journal. (2013)

  40. Luukkonen J, Hilli M, Nakamura M, Ritamo I, Valmu L, Kauppinen K et al (2019) Osteoclasts secrete osteopontin into resorption lacunae during bone resorption. Histochem Cell Biol 151:475–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S et al (2000) Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287:860–864

    Article  CAS  PubMed  Google Scholar 

  42. Katagiri YU, Sleeman J, Fujii H, Herrlich P, Hotta H, Tanaka K et al (1999) CD44 variants but not CD44s cooperate with β1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res 59:219–226

    CAS  PubMed  Google Scholar 

  43. Wai PY, Kuo PC (2008) Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev 27:103–118

    Article  CAS  PubMed  Google Scholar 

  44. Smith LL, Giachelli CM (1998) Structural requirements for α9β1-mediated adhesion and migration to thrombin-cleaved osteopontin. Exp Cell Res 242:351–360

    Article  CAS  PubMed  Google Scholar 

  45. Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS (2001) Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107:1055–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zohar R, Cheifetz S, McCulloch CA, Sodek J (1998) Analysis of intracellular osteopontin as a marker of osteoblastic cell differentiation and mesenchymal cell migration. Eur J Oral Sci 106:401–407

    Article  CAS  PubMed  Google Scholar 

  47. Desai B, Rogers MJ, Chellaiah MA (2007) Mechanisms of osteopontin and CD44 as metastatic principles in prostate cancer cells. Mol Cancer 6:1–16

    Article  Google Scholar 

  48. Cheng Y, Lin L, Li X, Lu A, Hou C, Wu Q et al (2021) ADAM10 is involved in the oncogenic process and chemo-resistance of triple-negative breast cancer via regulating Notch1 signaling pathway, CD44 and PrPc. Cancer Cell Int 21:1–15

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marrero-Diaz R, Bravo‐Cordero JJ, Megías D, García MA, Bartolomé RA, Teixido J et al (2009) Polarized MT1‐MMP‐CD44 interaction and CD44 cleavage during cell retraction reveal an essential role for MT1‐MMP in CD44‐mediated invasion. Cell Motil Cytoskeleton 66:48–61

    Article  CAS  PubMed  Google Scholar 

  50. Thorne RF, Legg JW, Isacke CM (2004) The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J Cell Sci 117:373–380

    Article  CAS  PubMed  Google Scholar 

  51. Senbanjo LT, Chellaiah MA (2017) CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front cell Dev biology 5:18

    Article  Google Scholar 

  52. Cho Y, Lee H, Kang H, Kim H, Kim S, Chun K (2015) Cleaved CD44 intracellular domain supports activation of stemness factors and promotes tumorigenesis of breast cancer. Oncotarget 6:8709

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xu H, Tian Y, Yuan X, Wu H, Liu Q, Pestell RG et al (2015) The role of CD44 in epithelial-mesenchymal transition and cancer development. OncoTargets and therapy 8:3783–3792

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Adjei IM, Temples MN, Brown SB, Sharma B (2018) Targeted nanomedicine to treat bone metastasis. Pharmaceutics 10:205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brook N, Brook E, Dharmarajan A, Dass CR, Chan A (2018) Breast cancer bone metastases: pathogenesis and therapeutic targets. Int J Biochem Cell Biol 96:63–78

    Article  CAS  PubMed  Google Scholar 

  56. Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F et al (2021) Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 101:797–855

    Article  PubMed  Google Scholar 

  57. Chen Y, Sosnoski DM, Mastro AM (2010) Breast cancer metastasis to the bone: mechanisms of bone loss. Breast Cancer Res 12:1–11

    Article  Google Scholar 

  58. Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L et al (2017) Bone metastases: an overview, oncology reviews.11

  59. Dai R, Liu M, Xiang X, Xi Z, Xu H (2022) Osteoblasts and osteoclasts: an important switch of tumour cell dormancy during bone metastasis. J Experimental Clin Cancer Res 41:1–12

    Article  Google Scholar 

  60. Maurizi A, Rucci N (2018) The osteoclast in bone metastasis: player and target, Cancers. 10 218

  61. Wang H, Pan J, Barsky L, Jacob JC, Zheng Y, Gao C et al (2021) Characteristics of pre-metastatic niche: the landscape of molecular and cellular pathways. Mol Biomed 2:1–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barsky L, Cohen-Erez I, Bado I, Zhang XH, Vago R (2022) Review old bone, new tricks,Clin.Exp.Metastasis.1–16

  63. Wu M, Li C, Yiang G, Cheng Y, Tsai AP, Hou Y et al (2018) Molecular regulation of bone metastasis pathogenesis. Cell Physiol Biochem 46:1423–1438

    Article  CAS  PubMed  Google Scholar 

  64. Shao H, Varamini P (2022) Breast Cancer bone metastasis: a narrative review of emerging targeted drug Delivery Systems, cells. 11:388

  65. Hsu YS, Greenbaum A, Schuettpelz LG, Christopher M, Borgerding JN, Day RB et al (2012) CXCL12 production by early mesenchymal progenitors is required for hematopoietic stem cell maintenance. Blood 120:510

    Article  Google Scholar 

  66. Mishra A, Shiozawa Y, Pienta KJ, Taichman RS (2011) Homing of cancer cells to the bone. Cancer Microenvironment 4:221–235

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sandiford OA, Donnelly RJ, El-Far MH, Burgmeyer LM, Sinha G, Pamarthi SH et al (2021) Mesenchymal stem cell–secreted Extracellular vesicles Instruct Stepwise dedifferentiation of breast Cancer cells into Dormancy at the bone marrow Perivascular RegionBone Marrow Perivascular Niche in breast Cancer dormancy. Cancer Res 81:1567–1582

    Article  CAS  PubMed  Google Scholar 

  68. Virk MS, Lieberman JR (2007) Tumor metastasis to bone. Arthritis Res therapy 9:1–10

    Article  Google Scholar 

  69. Russo S, Scotto di F, Carlo F, Gianfrancesco (2022) The osteoclast traces the Route to Bone Tumors and Metastases, Frontiers in Cell and Developmental Biology.788

  70. CC Lynch (2011) Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone 48:44–53

    Article  Google Scholar 

  71. Sharma G, Pothuraju R, Kanchan RK, Batra SK, Siddiqui JA (2022) Chemokines network in bone metastasis: vital regulators of seeding and soiling,

  72. Miftakhova R, Hedblom A, Semenas J, Robinson B, Simoulis A, Malm J et al (2016) Cyclin A1 and P450 aromatase promote metastatic homing and growth of stem-like prostate Cancer cells in the bone MarrowStem-like prostate Cancer cells in bone marrow metastases. Cancer Res 76:2453–2464

    Article  CAS  PubMed  Google Scholar 

  73. Zanetti C, Krause DS (2020) Caught in the net”: the extracellular matrix of the bone marrow in normal hematopoiesis and leukemia. Exp Hematol 89:13–25

    Article  CAS  PubMed  Google Scholar 

  74. Fuchs K, Hippe A, Schmaus A, Homey B, Sleeman JP, Orian-Rousseau V (2013) Opposing effects of high-and low-molecular weight hyaluronan on CXCL12-induced CXCR4 signaling depend on CD44, cell death & disease. 4:e819

  75. Hiraga T, Ito S, Nakamura H (2013) Cancer stem–like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and Hyaluronan ProductionCancer stem-like cell marker CD44 promotes bone metastases. Cancer Res 73:4112–4122

    Article  CAS  PubMed  Google Scholar 

  76. Sottnik JL, Theodorescu D (2016) CD44: a metastasis driver and therapeutic target. Oncoscience 3:320

    Article  PubMed  PubMed Central  Google Scholar 

  77. Murakami D, Okamoto I, Nagano O, Kawano Y, Tomita T, Iwatsubo T et al (2003) Presenilin-dependent γ-secretase activity mediates the intramembranous cleavage of CD44. Oncogene 22:1511–1516

    Article  CAS  PubMed  Google Scholar 

  78. Thorne RF, Legg JW, Isacke CM (2004) The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J Cell Sci 117:373–380

    Article  CAS  PubMed  Google Scholar 

  79. Kuo Y, Su C, Liu C, Chen T, Chen C, Wang H (2009) Transforming growth factor-β induces CD44 cleavage that promotes migration of MDA‐MB‐435s cells through the up‐regulation of membrane type 1‐matrix metalloproteinase. Int J Cancer 124:2568–2576

    Article  CAS  PubMed  Google Scholar 

  80. Nagano O, Saya H (2004) Mechanism and biological significance of CD44 cleavage, Cancer science. 95:930–935

  81. Hashimoto R, Katoh Y, Miyamoto Y, Itoh S, Daida H, Nakazato Y et al (2015) Increased extracellular and intracellular Ca2 lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms. Biochem Biophys Res Commun 457:647–652

    Article  CAS  PubMed  Google Scholar 

  82. Fanali C, Lucchetti D, Farina M, Corbi M, Cufino V, Cittadini A et al (2014) Cancer stem cells in colorectal cancer from pathogenesis to therapy: controversies and perspectives. World J gastroenterology: WJG 20:923

    Article  PubMed Central  Google Scholar 

  83. Das R, Jahr H, van Osch GJ, Farrell E (2010) The role of hypoxia in bone marrow–derived mesenchymal stem cells: considerations for regenerative medicine approaches. Tissue Eng Part B: Reviews 16:159–168

    Article  CAS  Google Scholar 

  84. Rankin EB, Giaccia AJ (2016) Hypoxic control of metastasis. Science 352:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yamamoto Y, Ibusuki M, Okumura Y, Kawasoe T, Kai K, Iyama K et al (2008) Hypoxia-inducible factor 1α is closely linked to an aggressive phenotype in breast cancer. Breast Cancer Res Treat 110:465–475

    Article  CAS  PubMed  Google Scholar 

  86. Krishnamachary B, Penet M, Nimmagadda S, Mironchik Y, Raman V, Solaiyappan M et al (2012) Hypoxia regulates CD44 and its variant isoforms through HIF-1α in triple negative breast cancer,

  87. Pang X, Gong K, Zhang X, Wu S, Cui Y, Qian B (2019) Osteopontin as a multifaceted driver of bone metastasis and drug resistance. Pharmacol Res 144:235–244

    Article  CAS  PubMed  Google Scholar 

  88. Katagiri YU, Sleeman J, Fujii H, Herrlich P, Hotta H, Tanaka K et al (1999) CD44 variants but not CD44s cooperate with β1-containing integrins to permit cells to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res 59:219–226

    CAS  PubMed  Google Scholar 

  89. Nemoto H, Rittling SR, Yoshitake H, Furuya K, Amagasa T, Tsuji K et al (2001) Osteopontin deficiency reduces experimental tumor cell metastasis to bone and soft tissues. J Bone Miner Res 16:652–659

    Article  CAS  PubMed  Google Scholar 

  90. R Stern (2009) Association between cancer and “acid mucopolysaccharides”: an old concept comes of age, finally, Hyaluronan in cancer biology.3–16

  91. Khaldoyanidi SK, Goncharova V, Mueller B, Schraufstatter IU (2014) Hyaluronan in the healthy and malignant hematopoietic microenvironment. Adv Cancer Res 123:149–189

    Article  PubMed  Google Scholar 

  92. Byrne NM, Summers MA, McDonald MM (2019) Tumor cell dormancy and reactivation in bone: skeletal biology and therapeutic opportunities. JBMR plus 3:e10125

    Article  PubMed  PubMed Central  Google Scholar 

  93. Alvarez-Elizondo MB, Weihs D (2022) Breast cancer stem cells: mechanobiology reveals highly invasive cancer cell subpopulations. Cell Mol Life Sci 79:1–9

    Article  Google Scholar 

  94. Fukuoka M, Ichikawa Y, Osako T, Fujita T, Baba S, Takeuchi K et al (2022) The ELEANOR noncoding RNA expression contributes to cancer dormancy and predicts late recurrence of estrogen receptor-positive breast cancer. Cancer Sci 113:2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. De Angelis ML, Francescangeli F, Zeuner A (2019) Breast cancer stem cells as drivers of tumor chemoresistance, dormancy and relapse: new challenges and therapeutic opportunities. Cancers 11:1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Damen MP, van Rheenen J, Scheele CL (2021) Targeting dormant tumor cells to prevent cancer recurrence. FEBS J 288:6286–6303

    Article  CAS  PubMed  Google Scholar 

  97. Galán-Díez M, Kousteni S (2017) The osteoblastic niche in hematopoiesis and hematological myeloid malignancies. Curr Mol biology Rep 3:53–62

    Article  Google Scholar 

  98. Curatolo C, Ludovico GM, Correale M, Pagliarulo A, Abbate I, Marucco EC et al (1992) Advanced prostate cancer follow-up with prostate-specific antigen, prostatic acid phosphatase, osteocalcin and bone isoenzyme of alkaline phosphatase. Eur Urol 21:105–107

    Article  PubMed  Google Scholar 

  99. Koeneman KS, Yeung F, Chung LW (1999) Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate 39:246–261

    Article  CAS  PubMed  Google Scholar 

  100. Bellahcene A, Bachelier R, Detry C, Lidereau R, Clezardin P, Castronovo V (2007) Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res Treat 101:135–148

    Article  CAS  PubMed  Google Scholar 

  101. Komori T (2009) Regulation of osteoblast differentiation by Runx2, Osteoimmunology. Springer, pp 43–49

  102. Senbanjo LT, AlJohani H, Majumdar S, Chellaiah MA (2019) Characterization of CD44 intracellular domain interaction with RUNX2 in PC3 human prostate cancer cells. Cell Communication and Signaling 17:1–13

    Article  CAS  Google Scholar 

  103. Gupta A, Cao W, Chellaiah MA (2012) Integrin αvβ3 and CD44 pathways in metastatic prostate cancer cells support osteoclastogenesis via a Runx2/Smad 5/receptor activator of NF-κB ligand signaling axis, molecular cancer. 11:1–17

  104. Fontanella RA, Sideri S, Stefano CD, Catizone A, Agostino SD, Angelini DF et al (2021) CD44v8-10 is a marker for malignant traits and a potential driver of bone metastasis in a subpopulation of prostate cancer cells. Cancer Biology & Medicine 18:788

    Article  CAS  Google Scholar 

  105. Levinger I, Ventura Y, Vago R (2014) Life is three dimensional—as in vitro Cancer cultures should be. Adv Cancer Res 121:383–414

    Article  CAS  PubMed  Google Scholar 

  106. Phuong DTK, Yoon TR, Kim HK, Lee ES (2015) AB139. The role of CD44 in the osteoblastic differentiation from mesenchymal stem cells,Annals of Translational Medicine.3

  107. Jamal HH, Aubin JE (1996) CD44 expression in fetal rat bone: in Vivoandin VitroAnalysis. Exp Cell Res 223:467–477

    Article  CAS  PubMed  Google Scholar 

  108. Kim HK, Kim JH, Abbas AA, Yoon TR (2009) Alendronate enhances osteogenic differentiation of bone marrow stromal cells: a preliminary study. Clin Orthop Relat Research® 467:3121–3128

    Article  Google Scholar 

  109. Cox RF, Jenkinson A, Pohl K, O’Brien FJ, Morgan MP (2012) Osteomimicry of mammary adenocarcinoma cells in vitro; increased expression of bone matrix proteins and proliferation within a 3D collagen environment. PLoS ONE 7:e41679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang W, Odero-Marah V, Chung LW (2005) Biologic and therapeutic implications of Osteomimicry and epithelial-mesenchymal transition in prostate Cancer, bone metastasis. Springer, pp 75–86

  111. Ban J, Fock V, Aryee DN, Kovar H (2021) Mechanisms, diagnosis and treatment of bone metastases. Cells 10:2944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Patrick Martin for valuable comments on the manuscript. The figures in this review were created with BioRender.com and parts of the figure were drawn by using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the writing of this manuscript and they have given their approval to the final version of the manuscript.

Corresponding author

Correspondence to Razi Vago.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that there is no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zer, N.S., Ben-Ghedalia-Peled, N., Gheber, L.A. et al. CD44 in Bone Metastasis Development: A Key Player in the Fate Decisions of the Invading Cells?. Clin Exp Metastasis 40, 125–135 (2023). https://doi.org/10.1007/s10585-023-10203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-023-10203-z

Keywords

Navigation