Skip to main content

Advertisement

Log in

Platelet deficiency in Tpo−/− mice can both promote and suppress the metastasis of experimental breast tumors in an organ-specific manner

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Platelets are thought to play an important role in metastasis formation, although the mechanisms involved remain incompletely understood. Here we studied the influence of platelet numbers on organ-specific metastasis to the lungs and lymph nodes using Tpo deficient mice that have low platelet counts. After tail vein injection of 4T1 breast cancer cells, the number of lung metastases was significantly lower in Tpo−/− mice compared to Tpo+/+ mice. The same was true for the bone-tropic 4T1.2 derivative. In spontaneous orthotopic metastasis assays, 4T1 and 4T1.2 primary tumor growth was not affected by the genotype of the mice. However, the number of 4T1.2 lung metastases was significantly lower in Tpo−/− mice compared to Tpo+/+ mice, whereas the number of 4T1 lung metastases was unaffected. Moreover, in mice bearing 4T1 tumors, lymph node metastases were larger in the Tpo−/− background, and lymph node metastasis frequency was higher in Tpo−/− mice bearing 4T1.2 tumors compared to that in wild-type mice. Enhanced lymph node metastasis in Tpo−/− mice was not associated with changes in peritumoral lymphatic vessel density in the primary tumors. Together, our data indicate that platelets do not affect primary tumor growth in this breast cancer model, but can differentially influence site-specific metastasis to lymph nodes and lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sporn MB (1996) The war on cancer. Lancet 347:1377–1381

    Article  CAS  Google Scholar 

  2. Gasic GJ, Gasic TB, Stewart CC (1968) Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci USA 61:46–52

    Article  CAS  Google Scholar 

  3. Haemmerle M, Taylor ML, Gutschner T, Pradeep S, Cho MS, Sheng J, Lyons YM, Nagaraja AS, Dood RL, Wen Y, Mangala LS, Hansen JM, Rupaimoole R, Gharpure KM, Rodriguez-Aguayo C, Yim SY, Lee JS, Ivan C, Hu W, Lopez-Berestein G, Wong ST, Karlan BY, Levine DA, Liu J, Afshar-Kharghan V, Sood AK (2017) Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat Commun 8:310

    Article  Google Scholar 

  4. Egan K, Cooke N, Kenny D (2014) Living in shear: platelets protect cancer cells from shear induced damage. Clin Exp Metastasis 31:697–704

    Article  Google Scholar 

  5. Nieswandt B, Hafner M, Echtenacher B, Männel DN (1999) Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 59:1295–1300

    CAS  Google Scholar 

  6. Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, Jirousková M, Degen JL (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105:178–185

    Article  CAS  Google Scholar 

  7. Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, Hu Z, Barney KA, Degen JL (2007) Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood 110:133–141

    Article  CAS  Google Scholar 

  8. Kopp HG, Placke T, Salih HR (2009) Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 69:7775–7783

    Article  CAS  Google Scholar 

  9. Placke T, Örgel M, Schaller M, Jung G, Rammensee HG, Kopp HG, Salih HR (2012) Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res 72:440–448

    Article  CAS  Google Scholar 

  10. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20:576–590

    Article  CAS  Google Scholar 

  11. Ludatscher RM, Luse SA, Suntzeff V (1967) An electron microscopic study of pulmonary tumor emboli from transplantable Morris hepatoma 5123. Cancer Res 27:1939–1952

    CAS  PubMed  Google Scholar 

  12. Warren BA, Vales O (1972) The adhesion of thromboplastic tumour emboli to vessel walls in vivo. Br J Exp Pathol 53:301–313

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lonsdorf AS, Krämer BF, Fahrleitner M, Schönberger T, Gnerlich S, Ring S, Gehring S, Schneider SW, Kruhlak MJ, Meuth SG, Nieswandt B, Gawaz M, Enk AH, Langer HF (2012) Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. J Biol Chem 287:2168–2178

    Article  CAS  Google Scholar 

  14. Im JH, Fu W, Wang H, Bhatia SK, Hammer DA, Kowalska MA, Muschel RJ (2004) Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 64:8613–8619

    Article  CAS  Google Scholar 

  15. Gil-Bernabé AM, Ferjancic S, Tlalka M, Zhao L, Allen PD, Im JH, Watson K, Hill SA, Amirkhosravi A, Francis JL, Pollard JW, Ruf W, Muschel RJ (2012) Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119:3164–3175

    Article  Google Scholar 

  16. Labelle M, Begum S, Hynes RO (2014) Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci USA 111:E3053–E3061

    Article  CAS  Google Scholar 

  17. Boucharaba A, Serre CM, Grès S, Saulnier-Blache JS, Bordet JC, Guglielmi J, Clézardin P, Peyruchaud O (2004) Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastasesin breast cancer. J Clin Invest 114:1714–1725

    Article  CAS  Google Scholar 

  18. Lefrançais E, Ortiz-Muñoz G, Caudrillier A, Mallavia B, Liu F, Sayah DM, Thornton EE, Headley MB, David T, Coughlin SR, Krummel MF, Leavitt AD, Passegué E, Looney MR (2017) The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 544:105–109

    Article  Google Scholar 

  19. de Sauvage FJ, Carver-Moore K, Luoh SM, Ryan A, Dowd M, Eaton DL, Moore MW (1996) Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. J Exp Med 183:651–656

    Article  Google Scholar 

  20. Murone M, Carpenter DA, de Sauvage FJ (1998) Hematopoietic deficiencies in c-mpl and Tpo knockout mice. Stem Cells 16:1–6

    Article  CAS  Google Scholar 

  21. Lelekakis M, Moseley JM, Martin TJ, Hards D, Williams E, Ho P, Lowen D, Javni J, Miller FR, Slavin J, Anderson RL (1999) A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 17:163–170

    Article  CAS  Google Scholar 

  22. Jackson W 3rd, Sosnoski DM, Ohanessian SE, Chandler P, Mobley A, Meisel KD, Mastro AM (2017) Role of megakaryocytes in breast cancer metastasis to bone. Cancer Res 77:1942–1954

    Article  CAS  Google Scholar 

  23. Wu Z, Wei D, Gao W, Xu Y, Hu Z, Ma Z, Gao C, Zhu X, Li Q (2015) Tpo-induced metabolic reprogramming drives liver metastasis of colorectal cancer CD110 + tumor-initiating cells. Cell Stem Cell 17:47–59

    Article  CAS  Google Scholar 

  24. Haemmerle M, Stone RL, Menter DG, Afshar-Kharghan V, Sood AK (2018) The platelet lifeline to cancer: challenges and opportunities. Cancer Cell. https://doi.org/10.1016/j.ccell.2018.03.002

    Article  PubMed  Google Scholar 

  25. Echtler K, Konrad I, Lorenz M, Schneider S, Hofmaier S, Plenagl F, Stark K, Czermak T, Tirniceriu A, Eichhorn M, Walch A, Enders G, Massberg S, Schulz C (2017) Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis. PLoS ONE 12:e0172788

    Article  Google Scholar 

  26. Wood S Jr (1958) Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch Pathol 66:550–568

    PubMed  Google Scholar 

  27. Dingemans KP (1974) Invasion of liver tissue by blood-borne mammary carcinoma cells. J Natl Cancer Inst 53:1813–1824

    Article  CAS  Google Scholar 

  28. Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6:100–102

    Article  CAS  Google Scholar 

  29. Wang H, Fu W, Im JH, Zhou Z, Santoro SA, Iyer V, DiPersio CM, Yu QC, Quaranta V, Al-Mehdi A, Muschel RJ (2004) Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol 164:935–941

    Article  CAS  Google Scholar 

  30. Saitoh Y, Terada N, Ohno N, Hamano A, Okumura N, Jin T, Saiki I, Ohno S (2014) Imaging of thrombosis and microcirculation in mouse lungs of initial melanoma metastasis with in vivo cryotechnique. Microvasc Res 91:73–83

    Article  CAS  Google Scholar 

  31. Sindelar WF, Tralka TS, Ketcham AS (1975) Electron microscopic observations on formation of pulmonary metastases. J Surg Res 18:137–161

    Article  CAS  Google Scholar 

  32. Menter DG, Hatfield JS, Harkins C, Sloane BF, Taylor JD, Crissman JD, Honn KV (1987) Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenouslycirculating tumor cells. Clin Exp Metastasis 5:65–78

    Article  CAS  Google Scholar 

  33. Crissman JD, Hatfield JS, Menter DG, Sloane B, Honn KV (1988) Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res 48:4065–4072

    CAS  PubMed  Google Scholar 

  34. Kramer RH, Nicolson GL (1979) Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc Natl Acad Sci USA 76:5704–5708

    Article  CAS  Google Scholar 

  35. Boxberger HJ, Paweletz N, Spiess E, Kriehuber R (1989) An in vitro model study of BSp73 rat tumour cell invasion into endothelial monolayer. Anticancer Res 9:1777–1786

    CAS  PubMed  Google Scholar 

  36. Lewalle JM, Bajou K, Desreux J, Mareel M, Dejana E, Noël A, Foidart JM (1997) Alteration of interendothelial adherens junctions following tumor cell-endothelial cell interaction in vitro. Exp Cell Res 237:347–356

    Article  CAS  Google Scholar 

  37. Tremblay PL, Huot J, Auger FA (2008) Mechanisms by which E-selectin regulates diapedesis of colon cancer cells under flow conditions. Cancer Res 68:5167–5176

    Article  CAS  Google Scholar 

  38. Leong HS, Robertson AE, Stoletov K, Leith SJ, Chin CA, Chien AE, Hague MN, Ablack A, Carmine-Simmen K, McPherson VA, Postenka CO, Turley EA, Courtneidge SA, Chambers AF, Lewis JD (2014) Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep 8:1558–1570

    Article  CAS  Google Scholar 

  39. Häuselmann I, Roblek M, Protsyuk D, Huck V, Knopfova L, Grässle S, Bauer AT, Schneider SW, Borsig L (2016) Monocyte induction of E-selectin-mediated endothelial activation releases VE-cadherin junctions to promote tumor cell extravasation in the metastasis cascade. Cancer Res 76:5302–5312

    Article  Google Scholar 

  40. Honn KV, Tang DG, Grossi IM, Renaud C, Duniec ZM, Johnson CR, Diglio CA (1994) Enhanced endothelial cell retraction mediated by 12(S)-HETE: a proposed mechanism for the role of platelets in tumor cell metastasis. Exp Cell Res 210:1–9

    Article  CAS  Google Scholar 

  41. Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S (2013) Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis viaP2Y2 receptor. Cancer Cell 24:130–137

    Article  CAS  Google Scholar 

  42. Ward Y, Lake R, Faraji F, Sperger J, Martin P, Gilliard C, Ku KP, Rodems T, Niles D, Tillman H, Yin J, Hunter K, Sowalsky AG, Lang J, Kelly K (2018) Platelets promote metastasis via binding tumor CD97 leading to bidirectional signaling that coordinates transendothelial migration. Cell Rep 23:808–822

    Article  CAS  Google Scholar 

  43. Pearlstein E, Ambrogio C, Karpatkin S (1984) Effect of antiplatelet antibody on the development of pulmonary metastases following injection of CT26 colon adenocarcinoma, Lewis lung carcinoma, and B16 amelanotic melanoma tumor cells into mice. Cancer Res 44:3884–3887

    CAS  PubMed  Google Scholar 

  44. Karpatkin S, Pearlstein E, Ambrogio C, Coller BS (1988) Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 81:1012–1019

    Article  CAS  Google Scholar 

  45. Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR (2004) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104:397–401

    Article  CAS  Google Scholar 

  46. Coupland LA, Chong BH, Parish CR (2012) Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Res 72:4662–4671

    Article  CAS  Google Scholar 

  47. Smeda M, Kieronska A, Proniewski B, Jasztal A, Selmi A, Wandzel K, Zakrzewska A, Wojcik T, Przyborowski K, Derszniak K, Stojak M, Kaczor D, Buczek E, Watala C, Wietrzyk J, Chlopicki S (2018) Dual antiplatelet therapy with clopidogrel and aspirin increases mortality in 4T1 metastatic breast cancer-bearing mice by inducing vascular mimicry in primary tumour. Oncotarget 9:17810–17824

    Article  Google Scholar 

  48. Mahalingam M, Ugen KE, Kao KJ, Klein PA (1988) Functional role of platelets in experimental metastasis studied with cloned murine fibrosarcomacell variants. Cancer Res 48:1460–1464

    CAS  PubMed  Google Scholar 

  49. Morimoto K, Satoh-Yamaguchi K, Hamaguchi A, Inoue Y, Takeuchi M, Okada M, Ikeda W, Takai Y, Imai T (2008) Interaction of cancer cells with platelets mediated by Necl-5/poliovirus receptor enhances cancercell metastasis to the lungs. Oncogene 27:264–273

    Article  CAS  Google Scholar 

  50. Weber MR, Zuka M, Lorger M, Tschan M, Torbett BE, Zijlstra A, Quigley JP, Staflin K, Eliceiri BP, Krueger JS, Marchese P, Ruggeri ZM, Felding BH (2016) Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thromb Res 140(Suppl 1):S27–S36

    Article  CAS  Google Scholar 

  51. Pulaski BA, Ostrand-Rosenberg S (2001) Mouse 4T1 breast tumor model. In: Coligan JE (ed) Current protocols in immunology. Wiley, New York

    Google Scholar 

  52. Sleeman J, Schmid A, Thiele W (2009) Tumor lymphatics. Semin Cancer Biol 19:285–297

    Article  CAS  Google Scholar 

  53. Sleeman JP (2015) The lymph node pre-metastatic niche. J Mol Med 93:1173–1184

    Article  CAS  Google Scholar 

  54. Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ, Orkin SH (1995) Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81:695–704

    Article  CAS  Google Scholar 

  55. Sleeman JP (2000) The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 157:55–81

    Article  CAS  Google Scholar 

  56. Pereira ER, Kedrin D, Seano G, Gautier O, Meijer EFJ, Jones D, Chin SM, Kitahara S, Bouta EM, Chang J, Beech E, Jeong HS, Carroll MC, Taghian AG, Padera TP (2018) Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science 359:1403–1407

    Article  CAS  Google Scholar 

  57. Brown M, Assen FP, Leithner A, Abe J, Schachner H, Asfour G, Bago-Horvath Z, Stein JV, Uhrin P, Sixt M, Kerjaschki D (2018) Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359:1408–1411

    Article  CAS  Google Scholar 

  58. Plantureux L, Crescence L, Dignat-George F, Panicot-Dubois L, Dubois C (2018) Effects of platelets on cancer progression. Thromb Res 164(Suppl 1):S40–S47

    Article  CAS  Google Scholar 

  59. Klement GL, Yip TT, Cassiola F, Kikuchi L, Cervi D, Podust V, Italiano JE, Wheatley E, Abou-Slaybi A, Bender E, Almog N, Kieran MW, Folkman J (2009) Platelets actively sequester angiogenesis regulators. Blood 113:2835–2842

    Article  CAS  Google Scholar 

  60. Nilsson RJ, Balaj L, Hulleman E, van Rijn S, Pegtel DM, Walraven M, Widmark A, Gerritsen WR, Verheul HM, Vandertop WP, Noske DP, Skog J, Würdinger T (2011) Blood platelets contain tumor-derived RNA Biomarkers. Blood 118:3680–3683

    Article  Google Scholar 

  61. Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, Schellen P, Verschueren H, Post E, Koster J, Ylstra B, Ameziane N, Dorsman J, Smit EF, Verheul HM, Noske DP, Reijneveld JC, Nilsson RJA, Tannous BA, Wesseling P, Wurdinger T (2015) RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 28:666–676

    Article  CAS  Google Scholar 

  62. Bunting S, Widmer R, Lipari T et al (1997) Normal platelets and megakaryocytes are produced in vivo in the absence of thrombopoietin. Blood 90:3423–3429

    CAS  PubMed  Google Scholar 

  63. Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM, Hooper AT, Amano H, Avecilla ST, Heissig B, Hattori K, Zhang F, Hicklin DJ, Wu Y, Zhu Z, Dunn A, Salari H, Werb Z, Hackett NR, Crystal RG, Lyden D, Rafii S (2006) Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4 + hemangiocytes. Nat Med 12:557–567

    Article  CAS  Google Scholar 

  64. Goubran HA, Stakiw J, Radosevic M, Burnouf T (2014) Platelets effects on tumor growth. Semin Oncol 41:359–369

    Article  CAS  Google Scholar 

  65. Ho-Tin-Noé B, Goerge T, Cifuni SM, Duerschmied D, Wagner DD (2008) Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 68:6851–6858

    Article  Google Scholar 

  66. Cho MS, Bottsford-Miller J, Vasquez HG, Stone R, Zand B, Kroll MH, Sood AK, Afshar-Kharghan V (2012) Platelets increase the proliferation of ovarian cancer cells. Blood 120:4869–4872

    Article  CAS  Google Scholar 

  67. Li R, Ren M, Chen N, Luo M, Deng X, Xia J, Yu G, Liu J, He B, Zhang X, Zhang Z, Zhang X, Ran B, Wu J (2014) Presence of intratumoral platelets is associated with tumor vessel structure and metastasis. BMC Cancer 14:167

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the expert technical assistance of Karim Badawi, Annette Gruber, Theresa Liepert, Amra Noa, Selma Huber and Sabine Müller. The authors thank Dr. Andrea Mastro for providing Tpo deficient mice and 4T1.2 cells.

Funding

Funding was provived by Institutional funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilko Thiele.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiele, W., Rothley, M., Dimmler, A. et al. Platelet deficiency in Tpo−/− mice can both promote and suppress the metastasis of experimental breast tumors in an organ-specific manner. Clin Exp Metastasis 35, 679–689 (2018). https://doi.org/10.1007/s10585-018-9924-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-018-9924-8

Keywords

Navigation