Skip to main content

Advertisement

Log in

Potentiation of tumor cell invasion by co-culture with monocytes accompanying enhanced production of matrix metalloproteinase and fibronectin

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Macrophages are a major population of immune cells, and those that infiltrate into tumor tissues and affect the malignant behavior of tumor cells are called tumor-associated macrophages (TAMs). We previously reported that human peripheral blood monocytes could be induced in vitro to differentiate into TAM-like cells by co-culture with tumor cells. In the present study, we characterized changes in the invasive phenotype of tumor cells after co-culture with monocytes, and found that MKN1 gastric carcinoma cells acquired higher invasive potential into Matrigel-reconstituted basement membranes, accompanied by enhanced production of matrix metalloproteinase (MMP)-9. The increased invasiveness was inhibited in the presence of an arginyl–glycyl–aspartic acid peptide, suggesting that the process is dependent on the integrin-extracellular matrix interaction. We also found that these cells secreted fibronectin into the culture medium and expressed α5 integrin on their surface at higher levels after the co-culture with monocytes for 5 days. The conditioned medium of monocytes also potentiated MKN1 cell invasion; however, the potentiation was lowered by the depletion of tumor necrosis factor (TNF)-α from the conditioned medium with an antibody-protein G-Sepharose conjugate. In addition, the treatment of MKN1 cells with TNF-α promoted invasion of these cells, as well as secretion of MMP-9 and fibronectin. These results suggest that TNF-α secreted from monocytes is, at least in part, involved in the changes in invasive phenotype of tumor cells during co-culture with monocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

FCS:

Fetal calf serum

MMP:

Matrix metalloproteinase

RGD:

Arginyl–glycyl–aspartic acid

TNF-α:

Tumor necrosis factor-α

TAM:

Tumor-associated macrophage

References

  1. Calorini L, Bianchini F (2010) Environmental control of invasiveness and metastatic dissemination of tumor cells: the role of tumor cell-host cell interactions. Cell Commun Signal 8:24

    PubMed  Google Scholar 

  2. Ungefroren H, Sebens S, Seidl D, Lehnert H, Hass R (2011) Interaction of tumor cells with the microenvironment. Cell Commun Signal 9:18

    Article  PubMed  CAS  Google Scholar 

  3. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  PubMed  CAS  Google Scholar 

  4. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  PubMed  CAS  Google Scholar 

  5. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  PubMed  CAS  Google Scholar 

  6. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  PubMed  CAS  Google Scholar 

  7. Lin CY, Lin CJ, Chen KH, Wu JC, Huang SH, Wang SM (2006) Macrophage activation increases the invasive properties of hepatoma cells by destabilization of the adherens junction. FEBS Lett 580:3042–3050

    Article  PubMed  CAS  Google Scholar 

  8. Torisu H, Ono M, Kiryu H, Furue M, Ohmoto Y, Nakayama J, Nishioka Y, Sone S, Kuwano M (2000) Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFalpha and IL-1alpha. Int J Cancer 85:182–188

    PubMed  CAS  Google Scholar 

  9. Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, Binder C (2004) Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25:1543–1549

    Article  PubMed  CAS  Google Scholar 

  10. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64:7022–7029

    Article  PubMed  CAS  Google Scholar 

  11. Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE (2000) Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 192:150–158

    Article  PubMed  CAS  Google Scholar 

  12. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801

    Article  PubMed  CAS  Google Scholar 

  13. Uutela M, Wirzenius M, Paavonen K, Rajantie I, He Y, Karpanen T, Lohela M, Wiig H, Salven P, Pajusola K, Eriksson U, Alitalo K (2004) PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis. Blood 104:3198–3204

    Article  PubMed  CAS  Google Scholar 

  14. Marconi C, Bianchini F, Mannini A, Mugnai G, Ruggieri S, Calorini L (2008) Tumoral and macrophage uPAR and MMP-9 contribute to the invasiveness of B16 murine melanoma cells. Clin Exp Metastasis 25:225–231

    Article  PubMed  CAS  Google Scholar 

  15. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  16. Kamoshida G, Matsuda A, Sekine W, Mizuno H, Oku T, Itoh S, Irimura T, Tsuji T (2012) Monocyte differentiation induced by co-culture with tumor cells involves RGD-dependent cell adhesion to extracellular matrix. Cancer Lett 315:145–152

    Article  PubMed  CAS  Google Scholar 

  17. Liotta LA (1986) Tumor invasion and metastases–role of the extracellular matrix: rhoads memorial award lecture. Cancer Res 46:1–7

    Article  PubMed  CAS  Google Scholar 

  18. Johansson N, Ahonen M, Kahari VM (2000) Matrix metalloproteinases in tumor invasion. Cell Mol Life Sci 57:5–15

    Article  PubMed  CAS  Google Scholar 

  19. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  PubMed  CAS  Google Scholar 

  20. Akiyama SK, Olden K, Yamada KM (1995) Fibronectin and integrins in invasion and metastasis. Cancer Metastasis Rev 14:173–189

    Article  PubMed  CAS  Google Scholar 

  21. Ritzenthaler JD, Han S, Roman J (2008) Stimulation of lung carcinoma cell growth by fibronectin-integrin signalling. Mol Biosyst 4:1160–1169

    Article  PubMed  CAS  Google Scholar 

  22. Miyazaki K (2006) Laminin-5 (laminin-332): unique biological activity and role in tumor growth and invasion. Cancer Sci 97:91–98

    Article  PubMed  CAS  Google Scholar 

  23. Hancox RA, Allen MD, Holliday DL, Edwards DR, Pennington CJ, Guttery DS, Shaw JA, Walker RA, Pringle JH, Jones JL (2009) Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms. Breast Cancer Res 11:R24

    Article  PubMed  Google Scholar 

  24. Saito Y, Sekine W, Sano R, Komatsu S, Mizuno H, Katabami K, Shimada K, Oku T, Tsuji T (2010) Potentiation of cell invasion and matrix metalloproteinase production by alpha3beta1 integrin-mediated adhesion of gastric carcinoma cells to laminin-5. Clin Exp Metastasis 27:197–205

    Article  PubMed  CAS  Google Scholar 

  25. Wei Y, Tang CH, Kim Y, Robillard L, Zhang F, Kugler MC, Chapman HA (2007) Urokinase receptors are required for alpha 5 beta 1 integrin-mediated signaling in tumor cells. J Biol Chem 282:3929–3939

    Article  PubMed  CAS  Google Scholar 

  26. Thant AA, Nawa A, Kikkawa F, Ichigotani Y, Zhang Y, Sein TT, Amin AR, Hamaguchi M (2000) Fibronectin activates matrix metalloproteinase-9 secretion via the MEK1-MAPK and the PI3 K-Akt pathways in ovarian cancer cells. Clin Exp Metastasis 18:423–428

    Article  PubMed  CAS  Google Scholar 

  27. Kornberg LJ, Earp HS, Turner CE, Prockop C, Juliano RL (1991) Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of beta 1 integrins. Proc Natl Acad Sci U S A 88:8392–8396

    Article  PubMed  CAS  Google Scholar 

  28. Qian F, Zhang ZC, Wu XF, Li YP, Xu Q (2005) Interaction between integrin alpha(5) and fibronectin is required for metastasis of B16F10 melanoma cells. Biochem Biophys Res Commun 333:1269–1275

    Article  PubMed  CAS  Google Scholar 

  29. Zheng M, Fang H, Tsuruoka T, Tsuji T, Sasaki T, Hakomori S (1993) Regulatory role of GM3 ganglioside in alpha 5 beta 1 integrin receptor for fibronectin-mediated adhesion of FUA169 cells. J Biol Chem 268:2217–2222

    PubMed  CAS  Google Scholar 

  30. Koike J, Nagata K, Kudo S, Tsuji T, Irimura T (2000) Density-dependent induction of TNF-alpha release from human monocytes by immobilized P-selectin. FEBS Lett 477:84–88

    Article  PubMed  CAS  Google Scholar 

  31. Katabami K, Mizuno H, Sano R, Saito Y, Ogura M, Itoh S, Tsuji T (2005) Transforming growth factor-beta1 upregulates transcription of alpha3 integrin gene in hepatocellular carcinoma cells via Ets-transcription factor-binding motif in the promoter region. Clin Exp Metastasis 22:539–548

    Article  PubMed  CAS  Google Scholar 

  32. Itoh S, Hamada E, Kamoshida G, Takeshita K, Oku T, Tsuji T (2010) Staphylococcal superantigen-like protein 5 inhibits matrix metalloproteinase 9 from human neutrophils. Infect Immun 78:3298–3305

    Article  PubMed  CAS  Google Scholar 

  33. Tsuji T, Kawada Y, Kai-Murozono M, Komatsu S, Han SA, Takeuchi K, Mizushima H, Miyazaki K, Irimura T (2002) Regulation of melanoma cell migration and invasion by laminin-5 and alpha3beta1 integrin (VLA-3). Clin Exp Metastasis 19:127–134

    Article  PubMed  CAS  Google Scholar 

  34. Nagaharu K, Zhang X, Yoshida T, Katoh D, Hanamura N, Kozuka Y, Ogawa T, Shiraishi T, Imanaka-Yoshida K (2011) Tenascin C induces epithelial-mesenchymal transition-like change accompanied by SRC activation and focal adhesion kinase phosphorylation in human breast cancer cells. Am J Pathol 178:754–763

    Article  PubMed  CAS  Google Scholar 

  35. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  36. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  PubMed  CAS  Google Scholar 

  37. Li Q, Withoff S, Verma IM (2005) Inflammation-associated cancer: NF-kappaB is the lynchpin. Trends Immunol 26:318–325

    Article  PubMed  Google Scholar 

  38. Luo JL, Maeda S, Hsu LC, Yagita H, Karin M (2004) Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297–305

    Article  PubMed  CAS  Google Scholar 

  39. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436

    Article  PubMed  CAS  Google Scholar 

  40. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    Article  PubMed  Google Scholar 

  41. Brigati C, Noonan DM, Albini A, Benelli R (2002) Tumors and inflammatory infiltrates: friends or foes? Clin Exp Metastasis 19:247–258

    Article  PubMed  CAS  Google Scholar 

  42. Tsubota Y, Ogawa T, Oyanagi J, Nagashima Y, Miyazaki K (2010) Expression of laminin gamma2 chain monomer enhances invasive growth of human carcinoma cells in vivo. Int J Cancer 127:2031–2041

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Masaaki Kurihara (Kurihara Clinic, Tokyo, Japan), Dr. Saotomo Itoh (Nagoya City University), Dr. Makoto Tsuiji and Dr. Teruaki Oku (Hoshi University School of Pharmacy and Pharmaceutical Sciences) for their helpful discussions. We would also like to thank Ms. Sayuri Suzuki, Mr. Takaki Miyajima, Mr. Michirou Ishiwa, and Mr. Yugo Nishimura (Hoshi University School of Pharmacy and Pharmaceutical Sciences) for their technical assistance. This study was supported in part by the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by the Open Research Center Project.

Conflicts of interest

The authors have no potential conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Tsuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamoshida, G., Matsuda, A., Miura, R. et al. Potentiation of tumor cell invasion by co-culture with monocytes accompanying enhanced production of matrix metalloproteinase and fibronectin. Clin Exp Metastasis 30, 289–297 (2013). https://doi.org/10.1007/s10585-012-9536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9536-7

Keywords

Navigation