Skip to main content

Advertisement

Log in

The gap junction protein Cx43 is involved in the bone-targeted metastatic behaviour of human prostate cancer cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

For decades, cancer was associated with gap-junction defects. However, more recently it appeared that the gap junction proteins (connexins) could be re-expressed and participate to cancer cell dissemination during the late stages of tumor progression. Since primary tumors of prostate cancer (PCa) are known to be connexin deficient, it was interesting to verify whether their bone-targeted metastatic behaviour could be influenced by the re-expression of the connexin type (connexin43) which is originally present in prostate tissue and highly expressed in bone where it participates to the differentiation of osteoblastic cells. Thus, we investigated the effect of the increased Cx43 expression, by retroviral infection, on the metastatic behaviour of two well-characterized cell lines (PC-3 and LNCaP) representing different stages of PCa progression. It appeared that Cx43 differently behaved in those cell lines and induced different phenotypes. In LNCaP, Cx43 was functional, localized at the plasma membrane and its high expression was correlated with a more aggressive phenotype both in vitro and in vivo. In particular, those Cx43-expressing LNCaP cells exhibited a high incidence of osteolytic metastases generated by bone xenografts in mice. Interestingly, LNCaP cells were also able to decrease the proliferation of cocultured osteoblastic cells. In contrast, the increased expression of Cx43 in PC-3 cells led to an unfunctional, cytoplasmic localization of the protein and was correlated with a reduction of proliferation, adhesion and invasion of the cells. In conclusion, the localization and the functionality of Cx43 may govern the ability of PCa cells to metastasize in bones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

μCT:

Micro-Computed Tomography

ALP:

Alkaline phosphatase

BMP3:

Bone morphogenic protein-3

Cx43:

Connexin43

DAG1:

Dystroglycan-1

Gap-FRAP:

Gap-fluorescence recovery after photobleaching

GJIC:

Gap junctional intercellular communication

LGALS1:

Galectin-1

MDP:

Methylene diphosphonate

MMP13:

Matrix metalloproteinase-13

NOV/CCN3:

Nephroblastoma overexpressed gene/connective tissue growth factor3

OB:

Osteoblastic

OCN:

Osteocalcin

OPG:

Osteoprotegerin

OPN:

Osteopontin

PCa:

Prostate cancer

PLAT:

Plasminogen activator tissue-type

PTX-3:

Pentraxin-related protein-3

RANKL:

Receptor activator of nuclear factor-kappaB ligand

TIMP2:

MetalloProteinase inhibitor-2

References

  1. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  PubMed  CAS  Google Scholar 

  2. Huang CF, Lira C, Chu K, Bilen MA, Lee YC, Ye X, Kim SM, Ortiz A, Wu FL, Logothetis CJ, Yu-Lee LY, Lin SH (2010) Cadherin-11 increases migration and invasion of prostate cancer cells and enhances their interaction with osteoblasts. Cancer Res 70(11):4580–4589

    Article  PubMed  CAS  Google Scholar 

  3. Ito A, Koma Y, Uchino K, Okada T, Ohbayashi C, Tsubota N, Okada M (2006) Increased expression of connexin 26 in the invasive component of lung squamous cell carcinoma: significant correlation with poor prognosis. Cancer Lett 234(2):239–248

    Article  PubMed  CAS  Google Scholar 

  4. Cronier L, Crespin S, Strale PO, Defamie N, Mesnil M (2009) Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal 11(2):323–338

    Article  PubMed  CAS  Google Scholar 

  5. Naus CC, Laird DW (2010) Implications and challenges of connexin connections to cancer. Nat Rev Cancer 10(6):435–441

    Article  PubMed  CAS  Google Scholar 

  6. Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84(3):381–388

    Article  PubMed  CAS  Google Scholar 

  7. Evans WH, De Vuyst E, Leybaert L (2006) The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397(1):1–14

    Article  PubMed  CAS  Google Scholar 

  8. Herve JC, Bourmeyster N, Sarrouilhe D (2004) Diversity in protein–protein interactions of connexins: emerging roles. Biochim Biophys Acta 1662(1–2):22–41

    PubMed  CAS  Google Scholar 

  9. Loewenstein WR (1979) Junctional intercellular communication and the control of growth. Biochim Biophys Acta 560(1):1–65

    PubMed  CAS  Google Scholar 

  10. Mesnil M, Crespin S, Avanzo JL, Zaidan-Dagli ML (2005) Defective gap junctional intercellular communication in the carcinogenic process. Biochim Biophys Acta 1719(1–2):125–145

    PubMed  CAS  Google Scholar 

  11. Avanzo JL, Mesnil M, Hernandez-Blazquez FJ, Mackowiak II, Mori CM, da Silva TC, Oloris SC, Garate AP, Massironi SM, Yamasaki H, Dagli ML (2004) Increased susceptibility to urethane-induced lung tumors in mice with decreased expression of connexin43. Carcinogenesis 25(10):1973–1982

    Article  PubMed  CAS  Google Scholar 

  12. Pointis G, Fiorini C, Gilleron J, Carette D, Segretain D (2007) Connexins as precocious markers and molecular targets for chemical and pharmacological agents in carcinogenesis. Curr Med Chem 14(21):2288–2303

    Article  PubMed  CAS  Google Scholar 

  13. Mehta PP, Perez-Stable C, Nadji M, Mian M, Asotra K, Roos BA (1999) Suppression of human prostate cancer cell growth by forced expression of connexin genes. Dev Genet 24(1–2):91–110

    Article  PubMed  CAS  Google Scholar 

  14. Fukushima M, Hattori Y, Yoshizawa T, Maitani Y (2007) Combination of non-viral connexin 43 gene therapy and docetaxel inhibits the growth of human prostate cancer in mice. Int J Oncol 30(1):225–231

    PubMed  CAS  Google Scholar 

  15. Xu HT, Li QC, Zhang YX, Zhao Y, Liu Y, Yang ZQ, Wang EH (2008) Connexin 43 recruits E-cadherin expression and inhibits the malignant behaviour of lung cancer cells. Folia Histochem Cytobiol 46(3):315–321

    Article  PubMed  CAS  Google Scholar 

  16. Oliveira R, Christov C, Guillamo JS, de Bouard S, Palfi S, Venance L, Tardy M, Peschanski M (2005) Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas. BMC Cell Biol 6(1):7

    Article  PubMed  Google Scholar 

  17. Zhang W, DeMattia JA, Song H, Couldwell WT (2003) Communication between malignant glioma cells and vascular endothelial cells through gap junctions. J Neurosurg 98(4):846–853

    Article  PubMed  Google Scholar 

  18. Pollmann MA, Shao Q, Laird DW, Sandig M (2005) Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture. Breast Cancer Res 7(4):R522–R534

    Article  PubMed  CAS  Google Scholar 

  19. Kapoor P, Saunders MM, Li Z, Zhou Z, Sheaffer N, Kunze EL, Samant RS, Welch DR, Donahue HJ (2004) Breast cancer metastatic potential: correlation with increased heterotypic gap junctional intercellular communication between breast cancer cells and osteoblastic cells. Int J Cancer 111(5):693–697

    Article  PubMed  CAS  Google Scholar 

  20. Bellahcene A, Bachelier R, Detry C, Lidereau R, Clezardin P, Castronovo V (2007) Transcriptome analysis reveals an osteoblast-like phenotype for human osteotropic breast cancer cells. Breast Cancer Res Treat 101(2):135–148

    Article  PubMed  CAS  Google Scholar 

  21. Logothetis CJ, Lin SH (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5(1):21–28

    Article  PubMed  CAS  Google Scholar 

  22. Jin JK, Dayyani F, Gallick GE (2011) Steps in prostate cancer progression that lead to bone metastasis. Int J Cancer 128(11):2545–2561

    Article  PubMed  CAS  Google Scholar 

  23. Mehta PP, Lokeshwar BL, Schiller PC, Bendix MV, Ostenson RC, Howard GA, Roos BA (1996) Gap-junctional communication in normal and neoplastic prostate epithelial cells and its regulation by cAMP. Mol Carcinog 15(1):18–32

    Article  PubMed  CAS  Google Scholar 

  24. Govindarajan R, Zhao S, Song XH, Guo RJ, Wheelock M, Johnson KR, Mehta PP (2002) Impaired trafficking of connexins in androgen-independent human prostate cancer cell lines and its mitigation by alpha-catenin. J Biol Chem 277(51):50087–50097

    Article  PubMed  CAS  Google Scholar 

  25. Wang M, Berthoud VM, Beyer EC (2007) Connexin43 increases the sensitivity of prostate cancer cells to TNFalpha-induced apoptosis. J Cell Sci 120(Pt 2):320–329

    Article  PubMed  CAS  Google Scholar 

  26. Miekus K, Czernik M, Sroka J, Czyz J, Madeja Z (2005) Contact stimulation of prostate cancer cell migration: the role of gap junctional coupling and migration stimulated by heterotypic cell-to-cell contacts in determination of the metastatic phenotype of Dunning rat prostate cancer cells. Biol Cell 97(12):893–903

    Article  PubMed  CAS  Google Scholar 

  27. Schiller PC, D’Ippolito G, Balkan W, Roos BA, Howard GA (2001) Gap-junctional communication mediates parathyroid hormone stimulation of mineralization in osteoblastic cultures. Bone 28(1):38–44

    Article  PubMed  CAS  Google Scholar 

  28. Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R (2000) Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol 151(4):931–944

    Article  PubMed  CAS  Google Scholar 

  29. Crespin S, Bechberger J, Mesnil M, Naus CC, Sin WC (2010) The carboxy-terminal tail of connexin43 gap junction protein is sufficient to mediate cytoskeleton changes in human glioma cells. J Cell Biochem 110(3):589–597

    Article  PubMed  CAS  Google Scholar 

  30. Geneau G, Lamiche C, Niger C, Strale PO, Clarhaut J, Defamie N, Debiais F, Mesnil M, Cronier L (2010) Effect of endothelin-1 on osteoblastic differentiation is modified by the level of connexin43: comparative study on calvarial osteoblastic cells isolated from Cx43+/− and Cx43+/+ mice. Cell Tissue Res 340(1):103–115

    Article  PubMed  CAS  Google Scholar 

  31. Clarhaut J, Gemmill RM, Potiron VA, Ait-Si-Ali S, Imbert J, Drabkin HA, Roche J (2009) ZEB-1, a repressor of the semaphorin 3F tumor suppressor gene in lung cancer cells. Neoplasia 11(2):157–166

    PubMed  CAS  Google Scholar 

  32. Potiron VA, Sharma G, Nasarre P, Clarhaut JA, Augustin HG, Gemmill RM, Roche J, Drabkin HA (2007) Semaphorin SEMA3F affects multiple signaling pathways in lung cancer cells. Cancer Res 67(18):8708–8715

    Article  PubMed  CAS  Google Scholar 

  33. Goldberg GS, Bechberger JF, Naus CC (1995) A pre-loading method of evaluating gap junctional communication by fluorescent dye transfer. Biotechniques 18(3):490–497

    PubMed  CAS  Google Scholar 

  34. Cronier L, Bastide B, Herve JC, Deleze J, Malassine A (1994) Gap junctional communication during human trophoblast differentiation: influence of human chorionic gonadotropin. Endocrinology 135(1):402–408

    Article  PubMed  CAS  Google Scholar 

  35. Boersema PJ, Aye TT, van Veen TA, Heck AJ, Mohammed S (2008) Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 8(22):4624–4632

    Article  PubMed  CAS  Google Scholar 

  36. Majeska RJ, Rodan GA (1982) The effect of 1, 25(OH)2D3 on alkaline phosphatase in osteoblastic osteosarcoma cells. J Biol Chem 257(7):3362–3365

    PubMed  CAS  Google Scholar 

  37. Krutovskikh VA, Troyanovsky SM, Piccoli C, Tsuda H, Asamoto M, Yamasaki H (2000) Differential effect of subcellular localization of communication impairing gap junction protein connexin43 on tumor cell growth in vivo. Oncogene 19(4):505–513

    Article  PubMed  CAS  Google Scholar 

  38. Olbina G, Eckhart W (2003) Mutations in the second extracellular region of connexin 43 prevent localization to the plasma membrane, but do not affect its ability to suppress cell growth. Mol Cancer Res 1(9):690–700

    PubMed  CAS  Google Scholar 

  39. Bates DC, Sin WC, Aftab Q, Naus CC (2007) Connexin43 enhances glioma invasion by a mechanism involving the carboxy terminus. Glia 55(15):1554–1564

    Article  PubMed  Google Scholar 

  40. Lin JH, Takano T, Cotrina ML, Arcuino G, Kang J, Liu S, Gao Q, Jiang L, Li F, Lichtenberg-Frate H, Haubrich S, Willecke K, Goldman SA, Nedergaard M (2002) Connexin 43 enhances the adhesivity and mediates the invasion of malignant glioma cells. J Neurosci 22(11):4302–4311

    PubMed  CAS  Google Scholar 

  41. Kandouz M, Batist G (2010) Gap junctions and connexins as therapeutic targets in cancer. Expert Opin Ther Targets 14(7):681–692

    Article  PubMed  CAS  Google Scholar 

  42. Tang M, Asamoto M, Ogawa K, Naiki-Ito A, Sato S, Takahashi S, Shirai T (2009) Induction of apoptosis in the LNCaP human prostate carcinoma cell line and prostate adenocarcinomas of SV40T antigen transgenic rats by the Bowman-Birk inhibitor. Pathol Int 59(11):790–796

    Article  PubMed  CAS  Google Scholar 

  43. Shiirevnyamba A, Takahashi T, Shan H, Ogawa H, Yano S, Kanayama H, Izumi K, Uehara H (2011) Enhancement of osteoclastogenic activity in osteolytic prostate cancer cells by physical contact with osteoblasts. Br J Cancer 104(3):505–513

    Article  PubMed  CAS  Google Scholar 

  44. Guise T (2010) Examining the metastatic niche: targeting the microenvironment. Semin Oncol 37(Suppl 2):S2–S14

    Article  PubMed  CAS  Google Scholar 

  45. Andersen H, Jensen ON, Moiseeva EP, Eriksen EF (2003) A proteome study of secreted prostatic factors affecting osteoblastic activity: galectin-1 is involved in differentiation of human bone marrow stromal cells. J Bone Miner Res 18(2):195–203

    Article  PubMed  CAS  Google Scholar 

  46. Dougall WC, Chaisson M (2006) The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev 25(4):541–549

    Article  PubMed  CAS  Google Scholar 

  47. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, Chin JL, Vinholes JJ, Goas JA, Zheng M (2004) Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst 96(11):879–882

    Article  PubMed  CAS  Google Scholar 

  48. Li Z, Zhou Z, Donahue HJ (2008) Alterations in Cx43 and OB-cadherin affect breast cancer cell metastatic potential. Clin Exp Metastasis 25(3):265–272

    Article  PubMed  CAS  Google Scholar 

  49. Haass NK, Smalley KS, Herlyn M (2004) The role of altered cell–cell communication in melanoma progression. J Mol Histol 35(3):309–318

    Article  PubMed  CAS  Google Scholar 

  50. Elzarrad MK, Haroon A, Willecke K, Dobrowolski R, Gillespie MN, Al-Mehdi AB (2008) Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Med 6:20

    Article  PubMed  Google Scholar 

  51. Saunders MM, Seraj MJ, Li Z, Zhou Z, Winter CR, Welch DR, Donahue HJ (2001) Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 61(5):1765–1767

    PubMed  CAS  Google Scholar 

  52. Plante I, Stewart MK, Barr K, Allan AL, Laird DW (2011) Cx43 suppresses mammary tumor metastasis to the lung in a Cx43 mutant mouse model of human disease. Oncogene 30(14):1681–1692

    Article  PubMed  CAS  Google Scholar 

  53. Tate AW, Lung T, Radhakrishnan A, Lim SD, Lin X, Edlund M (2006) Changes in gap junctional connexin isoforms during prostate cancer progression. Prostate 66(1):19–31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French Society of Rheumatology (SFR); the “Ligue Nationale contre le Cancer” and The Canadian Institutes of Health Research (CCN, LJF). C. Lamiche is supported by grants from the region “Poitou–Charentes”. We are most grateful to Drs A. Le Pape and S. Lerondel (CIPA, CNRS, TAAM UPS 44, Orléans, France) for their expert assistance during in vivo experiments. The authors would like to thank Dr A.C. Balandre, N. Stoynov and L. Le Scouarnec for their technical support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Cronier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 432 kb)

Supplementary material 2 (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamiche, C., Clarhaut, J., Strale, PO. et al. The gap junction protein Cx43 is involved in the bone-targeted metastatic behaviour of human prostate cancer cells. Clin Exp Metastasis 29, 111–122 (2012). https://doi.org/10.1007/s10585-011-9434-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9434-4

Keywords

Navigation