Skip to main content

Advertisement

Log in

Fibroblast activation protein-α promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Fibroblast activation protein-α (FAP) is a cell surface, serine protease of the post-prolyl peptidase family that is expressed in human breast cancer but not in normal tissues. Previously, we showed that FAP expression increased tumor growth rates in a mouse model of human breast cancer. Here the role of the proteolytic activities of FAP in promoting tumor growth, matrix degradation and invasion was investigated. Mammary fat pads of female SCID mice were inoculated with breast cancer cells that express FAP and the mice treated with normal saline or Val-boroPro (talabostat); Glu-boroPro (PT-630); or 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine (LAF-237) that inhibit prolyl peptidases. Other mice were injected with breast cancer cells expressing a catalytically inactive mutant of FAP and did not receive inhibitor treatment. PT-630 and LAF-237 did not slow growth of tumors produced by any of the three cell lines expressing FAP. Talabostat slightly decreased the growth rates of the FAP-expressing tumors but because PT-630 and LAF-237 did not, the growth retardation was likely not related to the inhibition of FAP or the related post-prolyl peptidase dipeptidyl peptidase IV. Breast cancer cells expressing a catalytically inactive mutant of FAP (FAPS624A) also produced tumors that grew rapidly. In vitro studies revealed that cells expressing wild type FAP or FAPS624A degrade extracellular matrix (ECM) more extensively, accumulate higher levels of matrix metalloproteinase-9 (MMP-9) in conditioned medium, are more invasive in type I collagen gels, and have altered signaling compared to control transfectants that do not express FAP and form slow growing tumors. We conclude that the proteolytic activity of FAP participates in matrix degradation, but other functions of the protein stimulate increased tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

GIP:

Glucose dependent and insulinotropic polypeptide

GLP-1:

Glucagon-like peptide-1

ECM:

Extracellular matrix

FACS:

Fluorescence activated cell sorting

FAP:

Fibroblast activation protein-α

FAPS624A :

MDA MB-231 cells expressing a catalytically inactive mutant of FAP

FITC:

Fluorescien isothiocyanate

F19:

Mouse monoclonal antibody directed against human FAP

LAF-237:

(vildagliptin), 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine, an inhibitor of DPPIV and related proteases

MDA MB-231:

A human breast adenocarcinoma cell line

MMPs:

Matrix metalloproteinases

MMP-9:

Matrix metalloproteinase-9

pcDNA3.1:

A plasmid mammalian expression vector

PT-100:

Val-boroPro, an inhibitor of FAP and related proteases

PT-630:

Glu-boroPro, an inhibitor of FAP and related proteases

RT-PCR:

Reverse transcription-polymerase chain reaction

SCID:

Severe combined immune deficient

WTY-1:

Stable transfectant of MDA MB-231 engineered to express high levels of FAP

WTY-6:

Stable transfectant of MDA MB-231 engineered to express high levels of FAP

4G10:

Monoclonal antibody to phosphotyrosine

6-6B:

Monoclonal antibody to MMP-9

References

  1. Pineiro-Sanchez ML, Goldstein LA, Dodt J, Howard L, Yeh Y, Tran H, Argraves WS, Chen WT (1997) Identification of the 170-kDa melanoma membrane-bound gelatinase (seprase) as a serine integral membrane protease. J Biol Chem 272(12):7595–7601

    Article  PubMed  CAS  Google Scholar 

  2. Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, Old LJ, Rettig WJ (1994) Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci USA 91(12):5657–5661

    Article  PubMed  CAS  Google Scholar 

  3. O’Brien P, O’Connor BF (2008) Seprase: an overview of an important matrix serine protease. Biochim Biophys Acta 1784(9):1130–1145

    PubMed  Google Scholar 

  4. Wolf BB, Quan C, Tran T, Wiesmann C, Sutherlin D (2008) On the edge of validation–cancer protease fibroblast activation protein. Mini Rev Med Chem 8(7):719–727

    Article  PubMed  CAS  Google Scholar 

  5. Aertgeerts K, Levin I, Shi L, Snell GP, Jennings A, Prasad GS, Zhang Y, Kraus ML, Salakian S, Sridhar V et al (2005) Structural and kinetic analysis of the substrate specificity of human fibroblast activation protein alpha. J Biol Chem 280(20):19441–19444

    Article  PubMed  CAS  Google Scholar 

  6. Kelly T (1999) Evaluation of seprase activity. Clin Exp Metastasis 17:57–62

    Article  PubMed  CAS  Google Scholar 

  7. Lee KN, Jackson KW, Christiansen VJ, Lee CS, Chun JG, McKee PA (2006) Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 107(4):1397–1404

    Article  PubMed  CAS  Google Scholar 

  8. Chen WT, Kelly T, Ghersi G (2003) DPPIV, seprase, and related serine peptidases in multiple cellular functions. Curr Top Dev Biol 54:207–232

    Article  PubMed  CAS  Google Scholar 

  9. Milner JM, Kevorkian L, Young DA, Jones D, Wait R, Donell ST, Barksby E, Patterson AM, Middleton J, Cravatt BF et al (2006) Fibroblast activation protein alpha is expressed by chondrocytes following a pro-inflammatory stimulus and is elevated in osteoarthritis. Arthritis Res Ther 8(1):R23

    Article  PubMed  Google Scholar 

  10. Acharya PS, Zukas A, Chandan V, Katzenstein AL, Pure E (2006) Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum Pathol 37(3):352–360

    Article  PubMed  CAS  Google Scholar 

  11. Gorrell MD, Wang XM, Levy MT, Kable E, Marinos G, Cox G, McCaughan GW (2003) Intrahepatic expression of collagen and fibroblast activation protein (FAP) in hepatitis C virus infection. Adv Exp Med Biol 524:235–243

    Article  PubMed  CAS  Google Scholar 

  12. Levy MT, McCaughan GW, Abbott CA, Park JE, Cunningham AM, Muller E, Rettig WJ, Gorrell MD (1999) Fibroblast activation protein: a cell surface dipeptidyl peptidase and gelatinase expressed by stellate cells at the tissue remodelling interface in human cirrhosis. Hepatology 29(6):1768–1778

    Article  PubMed  CAS  Google Scholar 

  13. Pennisi A, Li X, Ling W, Khan S, Gaddy D, Suva LJ, Barlogie B, Shaughnessy JD, Aziz N, Yaccoby S (2009) Inhibitor of DASH proteases affects expression of adhesion molecules in osteoclasts and reduces myeloma growth and bone disease. Br J Haematol 145(6):775–787

    Google Scholar 

  14. Cohen SJ, Alpaugh RK, Palazzo I, Meropol NJ, Rogatko A, Xu Z, Hoffman JP, Weiner LM, Cheng JD (2008) Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas 37(2):154–158

    Article  PubMed  CAS  Google Scholar 

  15. Henry LR, Lee HO, Lee JS, Klein-Szanto A, Watts P, Ross EA, Chen WT, Cheng JD (2007) Clinical implications of fibroblast activation protein in patients with colon cancer. Clin Cancer Res 13(6):1736–1741

    Article  PubMed  CAS  Google Scholar 

  16. Monsky WL, Lin CY, Aoyama A, Kelly T, Akiyama SK, Mueller SC, Chen WT (1994) A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res 54(21):5702–5710

    PubMed  CAS  Google Scholar 

  17. Kennedy A, Dong H, Chen D, Chen WT (2009) Elevation of seprase expression and promotion of an invasive phenotype by collagenous matrices in ovarian tumor cells. Int J Cancer 124(1):27–35

    Article  PubMed  CAS  Google Scholar 

  18. Kelly T, Kechelava S, Rozypal TL, West KW, Korourian S (1998) Seprase, a membrane-bound protease, is overexpressed by invasive ductal carcinoma cells of human breast cancers. Mod Pathol 11(9):855–863

    PubMed  CAS  Google Scholar 

  19. Huang Y, Wang S, Kelly T (2004) Seprase promotes rapid tumor growth and increased microvessel density in a mouse model of human breast cancer. Cancer Res 64(8):2712–2716

    Article  PubMed  CAS  Google Scholar 

  20. Kelly T (2005) Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy. Drug Resist Updat 8(1–2):51–58

    Article  PubMed  CAS  Google Scholar 

  21. Thornberry NA, Gallwitz B (2009) Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract Res Clin Endocrinol Metab 23(4):479–486

    Article  PubMed  CAS  Google Scholar 

  22. Connolly BA, Sanford DG, Chiluwal AK, Healey SE, Peters DE, Dimare MT, Wu W, Liu Y, Maw H, Zhou Y et al (2008) Dipeptide boronic acid inhibitors of dipeptidyl peptidase IV: determinants of potency and in vivo efficacy and safety. J Med Chem 51(19):6005–6013

    Article  PubMed  CAS  Google Scholar 

  23. Santos AM, Jung J, Aziz N, Kissil JL, Pure E (2009) Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J Clin Invest 119(12):3613–3625

    Article  PubMed  CAS  Google Scholar 

  24. Rosenblum JS, Kozarich JW (2003) Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Curr Opin Chem Biol 7(4):496–504

    Article  PubMed  CAS  Google Scholar 

  25. Brandt I, Joossens J, Chen X, Maes MB, Scharpe S, De Meester I, Lambeir AM (2005) Inhibition of dipeptidyl-peptidase IV catalyzed peptide truncation by Vildagliptin ((2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl}-pyrrolidine-2-carbonitrile). Biochem Pharmacol 70(1):134–143

    Article  PubMed  CAS  Google Scholar 

  26. Van der Veken P, Haemers A, Augustyns K (2007) Prolyl peptidases related to dipeptidyl peptidase IV: potential of specific inhibitors in drug discovery. Curr Top Med Chem 7(6):621–635

    Article  PubMed  Google Scholar 

  27. Tsai TY, Hsu T, Chen CT, Cheng JH, Chiou MC, Huang CH, Tseng YJ, Yeh TK, Huang CY, Yeh KC et al (2009) Rational design and synthesis of potent and long-lasting glutamic acid-based dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 19(7):1908–1912

    Article  PubMed  CAS  Google Scholar 

  28. Kelly T (1999) Evaluation of seprase activity. Clin Exp Metastasis 17(1):57–62

    Article  PubMed  CAS  Google Scholar 

  29. Kelly T, Yan Y, Osborne RL, Athota AB, Rozypal TL, Colclasure JC, Chu WS (1998) Proteolysis of extracellular matrix by invadopodia facilitates human breast cancer cell invasion and is mediated by matrix metalloproteinases. Clin Exp Metastasis 16:501–512

    Article  PubMed  CAS  Google Scholar 

  30. Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP (1999) Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 274(19):13066–13076

    Article  PubMed  CAS  Google Scholar 

  31. Kaushal GP, Xiong X, Athota AB, Rozypal TL, Sanderson RD, Kelly T (1999) Syndecan-1 expression suppresses the level of myeloma matrix metalloproteinase-9. Br J Haematol 104:365–373

    Article  PubMed  CAS  Google Scholar 

  32. Garin-Chesa P, Old LJ, Rettig WJ (1990) Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA 87:7235–7239

    Article  PubMed  CAS  Google Scholar 

  33. Goodman JD, Rozypal TL, Kelly T (2003) Seprase, a membrane-bound protease, alleviates the serum growth requirement of human breast cancer cells. Clin Exp Metastasis 20(5):459–470

    Article  PubMed  CAS  Google Scholar 

  34. Ramirez-Montagut T, Blachere NE, Sviderskaya EV, Bennett DC, Rettig WJ, Garin-Chesa P, Houghton AN (2004) FAPalpha, a surface peptidase expressed during wound healing, is a tumor suppressor. Oncogene 23(32):5435–5446

    Article  PubMed  CAS  Google Scholar 

  35. Cheng JD, Valianou M, Canutescu AA, Jaffe EK, Lee HO, Wang H, Lai JH, Bachovchin WW, Weiner LM (2005) Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth. Mol Cancer Ther 4(3):351–360

    PubMed  CAS  Google Scholar 

  36. Cheng JD, Dunbrack RL Jr, Valianou M, Rogatko A, Alpaugh RK, Weiner LM (2002) Promotion of tumor growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer Res 62(16):4767–4772

    PubMed  CAS  Google Scholar 

  37. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93(3):411–422

    Article  PubMed  CAS  Google Scholar 

  38. Hangai M, Kitaya N, Xu J, Chan CK, Kim JJ, Werb Z, Ryan SJ, Brooks PC (2002) Matrix metalloproteinase-9-dependent exposure of a cryptic migratory control site in collagen is required before retinal angiogenesis. Am J Pathol 161(4):1429–1437

    Article  PubMed  CAS  Google Scholar 

  39. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744

    Article  PubMed  CAS  Google Scholar 

  40. Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR, Werb Z, Coussens LM, DeClerck YA (2004) Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 64(5):1675–1686

    Google Scholar 

  41. Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114(5):623–633

    PubMed  CAS  Google Scholar 

  42. Mueller SC, Yeh Y, Chen WT (1992) Department of A, Cell Biology GUSoMWDC: tyrosine phosphorylation of membrane proteins mediates cellular invasion by transformed cells. J Cell Biol 119(5):1309–1325

    Article  PubMed  CAS  Google Scholar 

  43. Brooks PC, Strèomblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85(5):683–693

    Article  PubMed  CAS  Google Scholar 

  44. Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J et al (2003) Differential regulation of cell motility and invasion by FAK. J Cell Biol 160(5):753–767

    Article  PubMed  CAS  Google Scholar 

  45. Mueller SC, Ghersi G, Akiyama SK, Sang Q-XA, Howard L, Pineiro-Sanchez M, Nakahara H, Yeh Y, Chen W-T (1999) A novel protease-docking function of integrin at invadopodia. J Biol Chem 274:24947–24952

    Article  PubMed  CAS  Google Scholar 

  46. Artym VV, Kindzelskii AL, Chen WT, Petty HR (2002) Molecular proximity of seprase and the urokinase-type plasminogen activator receptor on malignant melanoma cell membranes: dependence on beta1 integrins and the cytoskeleton. Carcinogenesis 23(10):1593–1601

    Article  PubMed  CAS  Google Scholar 

  47. Lichtner RB, Howlett AR, Lerch M, Xuan JA, Brink J, Langton-Webster B, Schneider MR (1998) Negative cooperativity between alpha 3 beta 1 and alpha 2 beta 1 integrins in human mammary carcinoma MDA MB 231 cells. Exp Cell Res 240(2):368–376

    Article  PubMed  CAS  Google Scholar 

  48. Morini M, Mottolese M, Ferrari N, Ghiorzo F, Buglioni S, Mortarini R, Noonan DM, Natali PG, Albini A (2000) The alpha 3 beta 1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP-9) activity. Int J Cancer 87(3):336–342

    Article  PubMed  CAS  Google Scholar 

  49. Christiansen VJ, Jackson KW, Lee KN, McKee PA (2007) Effect of fibroblast activation protein and alpha2-antiplasmin cleaving enzyme on collagen types I, III, and IV. Arch Biochem Biophys 457(2):177–186

    Article  PubMed  CAS  Google Scholar 

  50. Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Ozer HL, Schwab M, Albino AP, Old LJ (1993) Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res 53(14):3327–3335

    PubMed  CAS  Google Scholar 

  51. Ariga N, Sato E, Ohuchi N, Nagura H, Ohtani H (2001) Stromal expression of fibroblast activation protein/seprase, a cell membrane serine proteinase and gelatinase, is associated with longer survival in patients with invasive ductal carcinoma of breast. Int J Cancer 95(1):67–72

    Article  PubMed  CAS  Google Scholar 

  52. Iwasa S, Jin X, Okada K, Mitsumata M, Ooi A (2003) Increased expression of seprase, a membrane-type serine protease, is associated with lymph node metastasis in human colorectal cancer. Cancer Lett 199(1):91–98

    Article  PubMed  CAS  Google Scholar 

  53. Iwasa S, Okada K, Chen WT, Jin X, Yamane T, Ooi A, Mitsumata M (2005) ‘Increased expression of seprase, a membrane-type serine protease, is associated with lymph node metastasis in human colorectal cancer. Cancer Lett 227(2):229–236

    Article  PubMed  Google Scholar 

  54. Jin X, Iwasa S, Okada K, Mitsumata M, Ooi A (2003) Expression patterns of seprase, a membrane serine protease, in cervical carcinoma and cervical intraepithelial neoplasm. Anticancer Res 23(4):3195–3198

    PubMed  CAS  Google Scholar 

  55. Scott AM, Wiseman G, Welt S, Adjei A, Lee FT, Hopkins W, Divgi CR, Hanson LH, Mitchell P, Gansen DN et al (2003) A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res 9(5):1639–1647

    PubMed  CAS  Google Scholar 

  56. Adams S, Miller GT, Jesson MI, Watanabe T, Jones B, Wallner BP (2004) PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated cytotoxicity via a novel immune mechanism. Cancer Res 64(15):5471–5480

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Amir Khan for help producing the cDNA encoding the S624A mutant FAP. The authors thank Steven Post for critical review of the manuscript. Supported by grants from the DoD CDMRP-BCRP-BC074331, Arkansas Breast Cancer Research Program and funds from Point Therapeutics, Inc.

Conflict of interest

The study was funded in part by Point Therapeutics who produced the talabostat and PT-630 compounds used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Simms, A.E., Mazur, A. et al. Fibroblast activation protein-α promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin Exp Metastasis 28, 567–579 (2011). https://doi.org/10.1007/s10585-011-9392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9392-x

Keywords

Navigation