Skip to main content

Advertisement

Log in

Inhibition of orthotopic osteosarcoma growth and metastasis by multitargeted antitumor activities of pigment epithelium-derived factor

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Osteosarcoma is major cause of cancer-related death in the pediatric age group, and this is due to the development of pulmonary metastases that fail to be eradicated with current treatment regimes. Although there have been significant improvements in the long-term survival of such patients, 25–50% with initially non-metastatic disease, subsequently develop metastases and this remains the major cause of death for these patients. In this study, we report the multimodal activity of pigment epithelium-derived factor (PEDF) in inhibiting osteosarcoma growth, angiogenesis and metastasis. In vitro, we found that administration of recombinant PEDF (rPEDF) on two osteosarcoma cell lines (rat UMR 106-01 and human SaOS-2) significantly reduced tumor cell proliferation and increased apoptosis, as well as decreased cell invasion, angiogenesis, and increased adhesion to collagen type-1. Administration of rPEDF upregulated the mRNA expression of phenotypic osteoblast differentiation markers (ALP, pro-α1 collagen and osteocalcin) in a pre-osteoblastic cell line, UMR 201, and also increased mineralized nodule formation in both UMR 106-01 and SaOS-2. In vivo, rPEDF dramatically suppressed primary osteosarcoma growth and the development of macroscopic pulmonary metastases in an orthotopic model of human osteosarcoma (SaOS-2). Interestingly, no activity was seen in tumors grown subcutaneously, suggesting a paracrine interaction between PEDF and the bone microenvironment. Preliminary pharmacoevaluation studies demonstrated rPEDF stability within media containing serum and osteosarcoma cells, and no gross systemic toxicity was observed in vivo with rPEDF administration. These results suggest that PEDF is emerging as an attractive and clinically appealing drug candidate for the treatment of osteosarcoma

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  2. Ferrari S, Smeland S, Mercuri M et al (2005) Neoadjuvant chemotherapy with high-dose Ifosfamide, high-dose methotrexate, cisplatin, and doxorubicin for patients with localized osteosarcoma of the extremity: a joint study by the Italian and Scandinavian Sarcoma groups. J Clin Oncol 23:8845–8852

    Article  PubMed  Google Scholar 

  3. Petrilli AS, de Camargo B, Filho VO et al (2006) Results of the Brazilian Osteosarcoma treatment group studies III and IV: prognostic factors and impact on survival. J Clin Oncol 24:1161–1168

    Article  PubMed  Google Scholar 

  4. Ek ET, Choong PF (2006) The role of high-dose therapy and autologous stem cell transplantation for pediatric bone and soft tissue sarcomas. Expert Rev Anticancer Ther 6:225–237

    Article  PubMed  CAS  Google Scholar 

  5. Quan GM, Ojaimi J, Nadesapillai AP et al (2002) Resistance of epiphyseal cartilage to invasion by osteosarcoma is likely to be due to expression of antiangiogenic factors. Pathobiology 70:361–367

    Article  PubMed  CAS  Google Scholar 

  6. Dawson DW, Volpert OV, Gillis P et al (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285:245–248

    Article  PubMed  CAS  Google Scholar 

  7. Volpert OV, Zaichuk T, Zhou W et al (2002) Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 8:349–357

    Article  PubMed  CAS  Google Scholar 

  8. Cai J, Jiang WG, Grant MB et al (2006) Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1. J Biol Chem 281:3604–3613

    Article  PubMed  CAS  Google Scholar 

  9. Pignolo RJ, Francis MK, Rotenberg MO et al (2003) Putative role for EPC-1/PEDF in the G0 growth arrest of human diploid fibroblasts. J Cell Physiol 195:12–20

    Article  PubMed  CAS  Google Scholar 

  10. Abe R, Shimizu T, Yamagishi S et al (2004) Overexpression of pigment epithelium-derived factor decreases angiogenesis and inhibits the growth of human malignant melanoma cells in vivo. Am J Pathol 164:1225–1232

    PubMed  CAS  Google Scholar 

  11. Crawford SE, Stellmach V, Ranalli M et al (2001) Pigment epithelium-derived factor (PEDF) in neuroblastoma: a multifunctional mediator of Schwann cell antitumor activity. J Cell Sci 114:4421–4428

    PubMed  CAS  Google Scholar 

  12. Filleur S, Volz K, Nelius T et al (2005) Two functional epitopes of pigment epithelial-derived factor block angiogenesis and induce differentiation in prostate cancer. Cancer Res 65:5144–5152

    Article  PubMed  CAS  Google Scholar 

  13. Ek ET, Dass CR, Choong PF (2006) Pigment epithelium-derived factor: a multimodal tumor inhibitor. Mol Cancer Ther 5:1641–1646

    Article  PubMed  CAS  Google Scholar 

  14. Hase R, Miyamoto M, Uehara H et al (2005) Pigment epithelium-derived factor gene therapy inhibits human pancreatic cancer in mice. Clin Cancer Res 11:8737–8744

    Article  PubMed  CAS  Google Scholar 

  15. Doll JA, Stellmach VM, Bouck NP et al (2003) Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med 9:774–780

    Article  PubMed  CAS  Google Scholar 

  16. Cheung LW, Au SC, Cheung AN et al (2006) Pigment epithelium-derived factor is estrogen sensitive and inhibits the growth of human ovarian cancer and ovarian surface epithelial cells. Endocrinology 147:4179–4191

    Article  PubMed  CAS  Google Scholar 

  17. Fisher JL, Mackie PS, Howard ML et al (2001) The expression of the urokinase plasminogen activator system in metastatic murine osteosarcoma: an in vivo mouse model. Clin Cancer Res 7:1654–1660

    PubMed  CAS  Google Scholar 

  18. Dass CR, Ek ET, Contreras KG et al (2006) A novel orthotopic murine model provides insights into cellular and molecular characteristics contributing to human osteosarcoma. Clin Exp Metastasis 23:367–380

    Article  PubMed  Google Scholar 

  19. Nadiminty N, Lou W, Lee SO et al (2006) Prostate-specific antigen modulates genes involved in bone remodeling and induces osteoblast differentiation of human osteosarcoma cell line SaOS-2. Clin Cancer Res 12:1420–1430

    Article  PubMed  CAS  Google Scholar 

  20. Fahmy RG, Dass CR, Sun LQ et al (2003) Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med 9:1026–1032

    Article  PubMed  CAS  Google Scholar 

  21. Ek ET, Dass CR, Choong PF (2006) PEDF: a potential molecular therapeutic target with multiple anti-cancer activities. Trends Mol Med 12:497–502

    Article  PubMed  CAS  Google Scholar 

  22. Meyer C, Notari L, Becerra SP (2002) Mapping the type I collagen-binding site on pigment epithelium-derived factor. Implications for its antiangiogenic activity. J Biol Chem 277:45400–45407

    Article  PubMed  CAS  Google Scholar 

  23. Quan GM, Ojaimi J, Li Y et al (2005) Localization of pigment epithelium-derived factor in growing mouse bone. Calcif Tissue Int 76:146–153

    Article  PubMed  CAS  Google Scholar 

  24. Choong PF, Martin TJ, Ng KW (1993) Effects of ascorbic acid, calcitriol, and retinoic acid on the differentiation of preosteoblasts. J Orthop Res 11:638–647

    Article  PubMed  CAS  Google Scholar 

  25. Takenaka K, Yamagishi S, Jinnouchi Y et al (2005) Pigment epithelium-derived factor (PEDF)-induced apoptosis and inhibition of vascular endothelial growth factor (VEGF) expression in MG63 human osteosarcoma cells. Life Sci 77:3231–3241

    Article  PubMed  CAS  Google Scholar 

  26. Streck CJ, Zhang Y, Zhou J et al (2005) Adeno-associated virus vector-mediated delivery of pigment epithelium-derived factor restricts neuroblastoma angiogenesis and growth. J Pediatr Surg 40:236–243

    Article  PubMed  Google Scholar 

  27. Garcia M, Fernandez-Garcia NI, Rivas V et al (2004) Inhibition of xenografted human melanoma growth and prevention of metastasis development by dual antiangiogenic/antitumor activities of pigment epithelium-derived factor. Cancer Res 64:5632–5642

    Article  PubMed  CAS  Google Scholar 

  28. Browne M, Stellmach V, Cornwell M et al (2006) Gene transfer of pigment epithelium-derived factor suppresses tumor growth and angiogenesis in a hepatoblastoma xenograft model. Pediatr Res 60:282–287

    Article  PubMed  CAS  Google Scholar 

  29. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17:319–336

    Article  PubMed  CAS  Google Scholar 

  30. Takasaki S, Fujiwara S, Shinkai H et al (1995) Human type VI collagen: purification from human subcutaneous fat tissue and an immunohistochemical study of morphea and systemic sclerosis. J Dermatol 22:480–485

    PubMed  CAS  Google Scholar 

  31. Hosomichi J, Yasui N, Koide T et al (2005) Involvement of the collagen I-binding motif in the anti-angiogenic activity of pigment epithelium-derived factor. Biochem Biophys Res Commun 335:756–761

    Article  PubMed  CAS  Google Scholar 

  32. Bilak MM, Corse AM, Bilak SR et al (1999) Pigment epithelium-derived factor (PEDF) protects motor neurons from chronic glutamate-mediated neurodegeneration. J Neuropathol Exp Neurol 58:719–728

    PubMed  CAS  Google Scholar 

  33. Tombran-Tink J, Mazuruk K, Rodriguez IR et al (1996) Organization, evolutionary conservation, expression and unusual Alu density of the human gene for pigment epithelium-derived factor, a unique neurotrophic serpin. Mol Vis 2:11

    PubMed  CAS  Google Scholar 

  34. Kuncl RW, Bilak MM, Bilak SR et al (2002) Pigment epithelium-derived factor is elevated in CSF of patients with amyotrophic lateral sclerosis. J Neurochem 81:178–184

    Article  PubMed  CAS  Google Scholar 

  35. Sawant S, Aparicio S, Tink AR et al (2004) Regulation of factors controlling angiogenesis in liver development: a role for PEDF in the formation and maintenance of normal vasculature. Biochem Biophys Res Commun 325:408–413

    Article  PubMed  CAS  Google Scholar 

  36. Uehara H, Miyamoto M, Kato K et al (2004) Expression of pigment epithelium-derived factor decreases liver metastasis and correlates with favorable prognosis for patients with ductal pancreatic adenocarcinoma. Cancer Res 64:3533–3537

    Article  PubMed  CAS  Google Scholar 

  37. Thomas DM, Johnson SA, Sims NA et al (2004) Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J Cell Biol 167:925–934

    Article  PubMed  CAS  Google Scholar 

  38. Tombran-Tink J, Chader GG, Johnson LV (1991) PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp Eye Res 53:411–414

    Article  PubMed  CAS  Google Scholar 

  39. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  40. Zaichuk TA, Shroff EH, Emmanuel R et al (2004) Nuclear factor of activated T cells balances angiogenesis activation and inhibition. J Exp Med 199:1513–1522

    Article  PubMed  CAS  Google Scholar 

  41. Zhang SX, Wang JJ, Gao G et al (2006) Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol 37:1–12

    Article  PubMed  CAS  Google Scholar 

  42. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  43. Guan M, Pang CP, Yam HF et al (2004) Inhibition of glioma invasion by overexpression of pigment epithelium-derived factor. Cancer Gene Ther 11:325–332

    Article  PubMed  CAS  Google Scholar 

  44. Kido A, Tsutsumi M, Iki K et al (1999) Overexpression of matrix metalloproteinase (MMP)-9 correlates with metastatic potency of spontaneous and 4-hydroxyaminoquinoline 1-oxide (4-HAQO)-induced transplantable osteosarcomas in rats. Cancer Lett 137:209–216

    Article  PubMed  CAS  Google Scholar 

  45. Notari L, Miller A, Martinez A et al (2005) Pigment epithelium-derived factor is a substrate for matrix metalloproteinase type 2 and type 9: implications for downregulation in hypoxia. Invest Ophthalmol Vis Sci 46:2736–2747

    Article  PubMed  Google Scholar 

  46. Kozaki K, Miyaishi O, Koiwai O et al (1998) Isolation, purification, and characterization of a collagen-associated serpin, caspin, produced by murine colon adenocarcinoma cells. J Biol Chem 273:15125–15130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

E.T.H.E is supported by scholarships awarded by the University of Melbourne, the Royal Australasian College of Surgeons, and the National Health and Medical Research Council of Australia (NH&MRC). This study was generously supported by grants from the Australian Orthopaedic Association, the Victorian Orthopaedic Research Trust Grant, and the Cancer Council of Victoria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crispin R. Dass.

Additional information

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ek, E.T.H., Dass, C.R., Contreras, K.G. et al. Inhibition of orthotopic osteosarcoma growth and metastasis by multitargeted antitumor activities of pigment epithelium-derived factor. Clin Exp Metastasis 24, 93–106 (2007). https://doi.org/10.1007/s10585-007-9062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9062-1

Keywords

Navigation