Skip to main content

Advertisement

Log in

On long range dependence in global surface temperature series

An editorial comment

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Long Range Dependence (LRD) scaling behavior has been argued to characterize long-term surface temperature time series. LRD is typically measured by the so-called “Hurst” coefficient, “H”. Using synthetic temperature time series generated by a simple climate model with known physics, I demonstrate that the values of H obtained for observational temperature time series can be understood in terms of the linear response to past estimated natural and anthropogenic external radiative forcing combined with the effects of random white noise weather forcing. The precise value of H is seen to depend on the particular noise realization. The overall distribution obtained over an ensemble of noise realizations is seen to be a function of the relative amplitude of external forcing and internal stochastic variability and additionally in climate “proxy” records, the amount of non-climatic noise present. There is no obvious reason to appeal to more exotic physics for an explanation of the apparent scaling behavior in observed temperature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tormas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc Natl Acad Sci U S A 104:3713–3718

    Article  Google Scholar 

  • Blender R, Fraedrich K (2003) Long time memory in global warming simulations. Geophys Res Lett 30(14):1769

    Article  Google Scholar 

  • Bloomfield P, Nychka D (1992) Climate spectra and detecting climate change. Clim Change 21:275–287

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Haris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the northern hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Eichner J, Koscielny-Bunde E, Bunde A, Havlin S, Schellnhuber H (2003) Power-law persistence and trends in the atmosphere: a detailed study of long temperature records. Clim Dyn 68E:046133. doi:10.1103/PhysRevE.68.046133

    Google Scholar 

  • Fraedrich K, Blender R (2003) Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys Rev Lett 90:108501. doi:10.1103/PhysRevLett.90.108501

    Article  Google Scholar 

  • Vyushin DI, Kushner PJ (2009) Power-law and long-memory characteristics of the atmospheric general circulation. J Climate 22:2890–2904

    Article  Google Scholar 

  • Gil-Alana L (2005) Statistical modeling of the temperatures in the Northern Hemisphere using fractional integration techniques. J Climate 18:5357–5369

    Article  Google Scholar 

  • Hasselmann K (1976) Stochastic climate models. Part 1: theory. Tellus 28:473–485

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Király A, Bartos I, Janosi IM (2006) Correlation properties of daily temperature anomalies over land. Tellus A 58:593–600. doi:10.1111/j.1600-0870.2006.00195.x

    Article  Google Scholar 

  • Koutsoyiannis D, Efstratiadis A, Mamassis N, Christofides A (2008) On the credibility of climate predictions. Hydrol Sci J 53(4):671–684

    Article  Google Scholar 

  • Mann ME (2008) Smoothing of climate time series revisited. Geophys Res Lett 35:L16708. doi:10.1029/2008GL034716

    Article  Google Scholar 

  • Mann ME, Lees J (1996) Robust estimation of background noise and signal detection in climatic time series. Clim Change 33:409–445

    Article  Google Scholar 

  • Mann ME, Rutherford S, Wahl E, Ammann C (2007) Robustness of proxy-based climate field reconstruction methods. J Geophys Res 112:D12109. doi:10.1029/2006JD008272

    Article  Google Scholar 

  • Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105:13252–13257

    Article  Google Scholar 

  • McGuffie K, Henderson-Sellers A (1997) Climate modeling primer, 2nd Edn. Wiley, Chichester

    Google Scholar 

  • Mills T (2007) Time series modelling of two millenia of northern hemisphere temperatures: long memory or shifting trends? J R Stat Soc Ser A 170:83–94

    Article  Google Scholar 

  • Myhre G, Highwood EJ, Shine KP, Stordal F (1998) New estimates of radiative forcing due to well mixed greenhouse gases. Geophys Res Lett 25:2715–2718

    Article  Google Scholar 

  • North GR, Cahalan RF, Coakley JA (1981) Energy balance climate models. Rev Geophys 19:91–121

    Article  Google Scholar 

  • Rea W, Reale M, Brown J (2011) Long memory in temperature reconstruction. Clim Change (this issue)

  • Smith R (1993) Long-range dependence and global warming. In: Barnett V, Turkman F (eds) Statistics for the environment. Wiley, Chichester, pp 141–161

    Google Scholar 

  • Vyushin DJ, Kushner PJ, Mayer J (2009) On the origins of temporal power-law behavior in the global atmospheric circulation. Geophys Res Lett 36:L14706. doi:10.1029/2009GL038771

    Article  Google Scholar 

  • Wigley TML, Raper SCB (1990) Natural variability of the climate system and detection of the greenhouse effect. Nature 344:324–327. doi:10.1038/344324a0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Mann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, M.E. On long range dependence in global surface temperature series. Climatic Change 107, 267–276 (2011). https://doi.org/10.1007/s10584-010-9998-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-010-9998-z

Keywords

Navigation