Skip to main content

Advertisement

Log in

An assessment of global and regional climate change based on the EH5OM climate model ensemble

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

An analysis of climate change for global domain and for the European/Mediterranean region between the two periods, 1961–1990 (representing the twentieth century or “present” climate) and 2041–2070 (representing future climate), from the three-member ensemble of the EH5OM climate model under the IPCC A2 scenario was performed. Ensemble averages for winter and summer seasons were considered, but also intra-ensemble variations and the change of interannual variability between the two periods. First, model systematic errors are assessed because they could be closely related to uncertainties in climate change. A strengthening of westerlies (zonalization) over the northern Europe is associated with an erroneous increase in MSLP over the southern Europe. This increase in MSLP is related to a (partial) suppression of summer convective precipitation. Global warming in future climate is relatively uniform in the upper troposphere and it is associated with a 10% wind increase in the subtropical jet cores. However, spatial irregularities in the low-level temperature signal single out some regions as particularly sensitive to climate change. For Europe, the largest near-surface temperature increase in winter is found over its north-eastern part (more than 3°C), and the largest summer warming (over 3.5°C) is over south Europe. For south Europe, the increase in temperature averages is almost an order of magnitude larger than the increase in interannual variability. The magnitude of the warming is larger than the model systematic error, and the spread among the three model realisations is much smaller than the magnitude of climate change. This further supports the significance of estimated future temperature change. However, this is not the case for precipitation, implying therefore larger uncertainties for precipitation than for temperature in future climate projections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnett TP (1999) Comparison of near-surface air temperature variability in 11 coupled global climate models. J Clim 12:511–518

    Article  Google Scholar 

  • Barnett TP, Hegerl G, Knutson T, Tett S (2000) Uncertainty levels in predicted patterns of anthropogenic climate change. J Geophys Res 105:15525–15542

    Article  Google Scholar 

  • Barnett DN, Brown SJ, Murphy JM, Sexton DMH, Webb MJ (2006) Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Clim Dyn 26:489–511

    Article  Google Scholar 

  • Boer GJ, Arpe K, Blackburn M, Déqué M, Gates WL, Hart TL, Le Treut H, Roeckner E, Sheinin DA, Simmonds I, Smith RNB, Tokioka T, Wetherald RT, Williamson D (1992) Some results from an intercomparison of the climates simulated by 14 atmospheric general circulation models. J Geophys Res 97:12771–12786

    Google Scholar 

  • Boer GJ, Flato G, Ramsden D (2000) A transient climate change simulation with greenhouse gas and aerosol forcing: projected climate to the twenty-first century. Clim Dyn 16:427–450

    Article  Google Scholar 

  • Branković Č, Jakob C, Miller M, Untch A, Wedi N (2002) Climate diagnostics of the ECMWF AMIP-2 simulations. ECMWF Tech. Memo. No. 360 (available from ECMWF, Shinfield Park, Reading, RG2 9AX, England)

  • Chou C, Neelin JD, Tu J-Y, Chen C-T (2006) Regional tropical precipitation change mechanisms in ECHAM4/OPYC3 under global warming. J Clim 19:4207–4223

    Article  Google Scholar 

  • Christensen JH et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chan Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 847–940

    Google Scholar 

  • Clark RT, Brown SJ, Murphy JM (2006) Modeling northern hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments. J Clim 19:4418–4435

    Article  Google Scholar 

  • Covey C, AchutaRao KM, Cubasch U, Jones P, Lambert SJ, Mann ME, Phillips TJ, Taylor KE (2003) An overview of results from the Coupled Model Intercomparison Project. Glob Planet Change 37:103–133

    Article  Google Scholar 

  • Déqué M, Royer JF (1991) GCM response of the mean zonal surface heat and water budgets to a global sea surface temperature anomaly. Dyn Atmos Oceans 16:133–146

    Article  Google Scholar 

  • Déqué M, Jones RG, Wild M, Giorgi F, Christensen JH, Hassell DC, Vidale PL, Rockel B, Jacob D, Kjellström E, de Castro M, Kucharski F, Van den Hurk B (2005) Global high resolution versus limited area model climate change projections over Europe: quantifying confidence level from PRUDENCE results. Clim Dyn 25:653–670

    Article  Google Scholar 

  • Douville H, Chauvin F, Planton S, Royer JF, Salas-Melia D, Tyteca S (2002) Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols. Clim Dyn 20:45–68

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734

    Article  Google Scholar 

  • Giorgi F, Bi X (2005a) Regional changes in surface climate interannual variability for the 21st century from ensembles of global model simulations. Geophys Res Lett 32:L13701. doi:10.1029/2005GL023002

    Article  Google Scholar 

  • Giorgi F, Bi X (2005b) Updated regional precipitation and temperature changes for the 21st century from ensemble of recent AOGCM simulations. Geophys Res Lett 32:L21715. doi:10.1029/2005GL024288

    Article  Google Scholar 

  • Giorgi F, Coppola E (2007) European climate-change oscillation. Geophys Res Lett 34:L21703. doi:10.1029/2007GL031223

    Article  Google Scholar 

  • Good P, Lowe J (2006) Emergent behaviour and uncertainty in multimodel climate projections of precipitation trends at small spatial scales. J Clim 19:5554–5569

    Article  Google Scholar 

  • Hagemann S, Arpe K, Roeckner E (2006) Evaluation of the hydrological cycle in the ECHAM5 model. J Clim 19:3810–3827

    Article  Google Scholar 

  • Hegerl GC, Karl TR, Allen M, Bindoff NL, Gillet N, Karoly D, Zhang X, Zwiers F (2006) Climate change detection and attribution: beyond mean temperature signals. J Clim 19:5058–5077

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 996 pp

    Google Scholar 

  • Johnson DR (1997) “General coldness of climate models” and the second law: implications for modeling the Earth system. J Clim 10:2826–2846

    Article  Google Scholar 

  • Jones PD, Osborn TJ, Briffa KR, Folland CK, Horton EB, Alexander LV, Parker DE, Rayner NA (2001) Adjusting for sampling density in grid box land and ocean surface temperature time series. J Geophys Res 106:3371–3380

    Article  Google Scholar 

  • Jungclaus JH, Botzet M, Haak H, Keenlyside N, Luo JJ, Latif M, Marotzke J, Mikolajewicz J, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972

    Article  Google Scholar 

  • Kållberg P, Berrisford P, Hoskins B, Simmons A, Uppala S, Lamy-Thépaut S, Hine R (2005) ERA-40 atlas. ERA-40 Project Report Series No. 19 (available from ECMWF, Shinfield Park, Reading, RG2 9AX, England)

  • Katz RW, Brown BG (1992) Extreme events in changing climate: variability is more important than averages. Clim Change 21:289–302

    Article  Google Scholar 

  • Klein SA, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6:1587–1606

    Article  Google Scholar 

  • Krishnamurti TN, Kishtawal CM, Zhang Z, LaRow T, Bachiochi D, Williford E, Gadgil S, Surendran S (2000) Multimodel ensemble forecasts for weather and seasonal climate. J Clim 13:4196–4216

    Article  Google Scholar 

  • Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17:83–106

    Article  Google Scholar 

  • Manabe S, Wetherald RT (1975) The effect of doubling the CO2 concentration on the climate of a general circulation model. J Atmos Sci 32:3–15

    Article  Google Scholar 

  • Marsland GA, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max Planck Institute global/sea-ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127

    Article  Google Scholar 

  • Meehl GA, Boer GJ, Covey C, Latif M, Stouffer RJ (2000) The Coupled Model Intercomparison Project (CMIP). Bull Am Meteorol Soc 81:313–318

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007a) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Meehl GA et al (2007b) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Monaghan AJ, Bromwich DH (2008) Advances in describing recent Antarctic climate variability. Bull Am Meteorol Soc 89:1295–1306

    Article  Google Scholar 

  • Müller WA, Roeckner E (2006) ENSO impact on midlatitude circulation patterns in future climate change projections. Geophys Res Lett 33:L05711. doi:10.1029/2005GL025032

    Article  Google Scholar 

  • Nakićenović N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emission scenarios. A special report of working group III of the IPCC. Cambridge University Press, Cambridge, 599 pp

    Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  • Nicholls N (2001) The insignificance of significance testing. Bull Am Meteorol Soc 82:981–986

    Article  Google Scholar 

  • Pinto JG, Ulbrich U, Leckebusch GC, Spangehl T, Reyers M, Zacharias S (2007) Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Clim Dyn 29:195–210

    Article  Google Scholar 

  • Räisänen J (2002) CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J Clim 15:2395–2411

    Article  Google Scholar 

  • Randall DA et al. (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89:303–311

    Article  Google Scholar 

  • Rind D (2008) The consequences of not knowing low- and high-latitude climate sensitivity. Bull Am Meteorol Soc 89:855–864

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Max-Planck Institute for Meteorology Rep. 349, Hamburg, 127 pp

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791

    Article  Google Scholar 

  • Roesch A, Roeckner E (2006) Assessment of snow cover and surface albedo in the ECHAM5 general circulation model. J Clim 19:3828–3843

    Article  Google Scholar 

  • Rowell DP (2005) A scenario of European climate change for the late twenty-first century: seasonal means and interannual variability. Clim Dyn 25:837–849

    Article  Google Scholar 

  • Rowell DP, Jones RG (2006) Causes and uncertainty of future summer drying over Europe. Clim Dyn 27:281–299

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209

    Article  Google Scholar 

  • Shindell DT, Miller RL, Schmidt GA, Pandolfo L (1999) Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399:452–455

    Article  Google Scholar 

  • Stone DA, Fyfe JC (2005) The effect of ocean mixing parametrisation on the enhanced CO2 response of the Southern Hemisphere midlatitude jet. Geophys Res Lett 32:L06811. doi:10.1029/2004GL022007

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211

    Article  Google Scholar 

  • Tibaldi S, D’Andrea F, Tosi E, Roeckner E (1997) Climatology of Northern Hemisphere blocking in the ECHAM model. Clim Dyn 13:649–666

    Article  Google Scholar 

  • Ulbrich U, Christoph M (1999) A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Clim Dyn 15:551–559

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 reanalysis. Q J Royal Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • von Storch H, Zwieres FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge, 484 pp

    Google Scholar 

  • Voss R, May W, Roeckner E (2002) Enhanced resolution modelling study of anthropogenic climate change: changes in extremes of the hydrological cycle. Int J Climatol 22:755–777

    Article  Google Scholar 

  • Wang G (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25:739–753

    Article  Google Scholar 

  • Wild M, Roeckner E (2006) Radiative fluxes in the ECHAM5 general circulation model. J Clim 19:3792–3809

    Article  Google Scholar 

  • WMO (1967) A note on climatological normals. World Meteorological Organization, Geneva, Switzerland, Tech. Note 84, WMO-No.208.TP.108, 19 pp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Čedo Branković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branković, Č., Srnec, L. & Patarčić, M. An assessment of global and regional climate change based on the EH5OM climate model ensemble. Climatic Change 98, 21–49 (2010). https://doi.org/10.1007/s10584-009-9731-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-009-9731-y

Keywords

Navigation