Skip to main content
Log in

Quantitative variation of LINE-1 sequences in five species and three subspecies of the subgenus Mus and in five Robertsonian races of Mus musculus domesticus

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The quantitative variation of a conserved region of the LINE-1 ORF2 sequence was determined in eight species and subspecies of the subgenus Mus (M. m. domesticus, M. m. musculus, M. m. castaneus, M. spicilegus, M. spretus, M. cervicolor, M. cookii, M. caroli) and five Robertsonian races of M. m. domesticus. No differences in LINE-1 ORF2 content were found between all acrocentric or Robertsonian chromosome races, whereas the quantitative variation of the LINE-1 ORF2 sequences detected among the eight taxa partly matches with the clades into which the subgenus is divided. An accumulation of LINE-1 ORF2 elements likely occurred during the evolution of the subgenus. Within the Asiatic clade, M. cervicolor, cookii, and caroli show a low quantity of LINE-1 sequences, also detected within the Palearctic clade in M. m. castaneus and M. spretus, representing perhaps the ancestral condition within the subgenus. On the other hand, M. m. domesticus, M. m. musculus and M. spicilegus showed a high content of LINE-1 ORF2 sequences. Comparison between the chromosomal hybridization pattern of M. m. domesticus, which possesses the highest content, and M. spicilegus did not show any difference in the LINE-1 ORF2 distribution, suggesting that the quantitative variation of this sequence family did not involve chromosome restructuring or a preferential chromosome accumulation, during the evolution of M. m. domesticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3′UTR:

3′ untranslated region

5′UTR:

5′ untranslated region

ANOVA:

analysis of variance

bp:

base pair

BSA:

bovine serum albumin

DAPI:

4′,6-diamidino-2-phenylindole

dCTP:

deoxycytidine triphosphate

DNA:

deoxyribonucleic acid

dNTP:

deoxyribonucleotide

FISH:

fluorescence in-situ hybridization

kb:

kilobase

LINE-1:

long interspersed nuclear element-1

LTR:

long terminal repeat

MITE:

miniature inverted-repeat transposable element

mtDNA:

mitochondrial deoxyribonucleic acid

NIH:

National Institutes of Health

ORF1:

open reading frame 1

ORF2:

open reading frame 2

PBS:

phosphate-buffered saline

PCR:

polymerase chain reaction

Rb:

Robertsonian

RNA:

ribonucleic acid

SDS:

sodium dodecyl sulfate

SNPs:

single-nucleotide polymorphism

SSC:

sodium chloride and sodium citrate

TEs:

transposable elements

References

  • Akagi K, Li J, Stephens RM, Volfovsky N, Symer DE (2008) Extensive variation between inbred mouse strains due to endogenous L1 retrotransposition. Genome Res 18:869–880

    Article  PubMed  CAS  Google Scholar 

  • Bailey JA, Carrel L, Chakravarti A, Eichler EE (2000) Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc Natl Acad Sci U S A 97:6634–6639

    Article  PubMed  CAS  Google Scholar 

  • Böhne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff JN (2008) Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res 16:203–215

    Article  PubMed  Google Scholar 

  • Boissinot S, Davis J, Entezam A, Petrov D, Furano AV (2006) Fitness cost of LINE-1 (L1) activity in humans. Proc Natl Acad Sci U S A 103:9590–9594

    Article  PubMed  CAS  Google Scholar 

  • Boyle AL, Ballard SG, Ward DC (1990) Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization. Proc Natl Acad Sci U S A 87:7757–7761

    Article  PubMed  CAS  Google Scholar 

  • Capanna E, Gropp A, Winking H, Noack G, Civitelli MV (1976) Robertsonian metacentrics in the mouse. Chromosoma 58:341–353

    Article  PubMed  CAS  Google Scholar 

  • Castro JP, Carareto CM (2004) Drosophila melanogaster P transposable elements: mechanisms of transposition and regulation. Genetica 121:107–118

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  • Chevret P, Dobigny G (2005) Systematics and evolution of the subfamily Gerbillinae (Mammalia, Rodentia, Muridae). Mol Phylogenet Evol 35:674–688

    Article  PubMed  CAS  Google Scholar 

  • Craig NL (1990) P element transposition. Cell 62:399–402

    Article  PubMed  CAS  Google Scholar 

  • Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12:1455–1465

    Article  PubMed  CAS  Google Scholar 

  • Dobigny G, Ozouf-Costaz C, Waters PD, Bonillo C, Coutanceau JP, Volobouev V (2004) LINE-1 amplification accompanies explosive genome repatterning in rodents. Chromosome Res 12:787–793

    Article  PubMed  CAS  Google Scholar 

  • Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH Jr (1991) Isolation of an active human transposable element. Science 254:1805–1808

    Article  PubMed  CAS  Google Scholar 

  • Eide D, Anderson P (1988) Insertion and excision of Caenorhabditis elegans transposable element Tc1. Mol Cell Biol 8:737–746

    PubMed  CAS  Google Scholar 

  • Ferris SD, Sage RD, Prager EM, Ritte U, Wilson AC (1983) Mitochondrial DNA evolution in mice. Genetics 105:681–721

    PubMed  CAS  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405

    Article  PubMed  CAS  Google Scholar 

  • Finnegan DJ (1992) Transposable elements. Curr Opin Genet Dev 2:861–867

    Article  PubMed  CAS  Google Scholar 

  • Furano AV (2000) The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Prog Nucleic Acid Res Mol Biol 64:255–294

    Article  PubMed  CAS  Google Scholar 

  • Furano AV, Duvernell DD, Boissinot S (2004) L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends Genet 20:9–14

    Article  PubMed  CAS  Google Scholar 

  • Garagna S, Redi CA, Capanna E et al (1993) Genome distribution, chromosomal allocation, and organization of the major and minor satellite DNAs in 11 species and subspecies of the genus Mus. Cytogenet Cell Genet 64:247–255

    Article  PubMed  CAS  Google Scholar 

  • Gray YH (2000) It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. Trends Genet 16:461–468

    Article  PubMed  CAS  Google Scholar 

  • Gropp A, Winking H (1981) Robertsonian translocations: cytology, meiosis segregation pattern and biological consequences of heterozygosity. In: Berry RJ (ed) Biology of the house mouse. Academic Press, pp 141–170

  • Guénet JL, Bonhomme F (2003) Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet 19:24–31

    Article  PubMed  Google Scholar 

  • Hauffe HC, Searle JB (1998) Chromosomal heterozygosity and fertility in house mice (Mus musculus domesticus) from Northern Italy. Genetics 150:1143–1154

    PubMed  CAS  Google Scholar 

  • Kazazian HH Jr (1998) Mobile elements and disease. Curr Opin Genet Dev 8:343–350

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH Jr (1999) An estimated frequency of endogenous insertional mutations in humans. Nat Genet 22:130

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH Jr (2000) Genetics. L1 retrotransposons shape the mammalian genome. Science 289:1152–1153

    Article  PubMed  CAS  Google Scholar 

  • Kehrer-Sawatzki H, Schreiner B, Tänzer S, Platzer M, Müller S, Hameister H (2002) Molecular characterization of the pericentric inversion that causes differences between chimpanzee chromosome 19 and human chromosome 17. Am J Hum Genet 71:375–388

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG, Lisch D (1997) Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci U S A 94:7704–7711

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Loeb DD, Padgett RW, Hardies SC et al (1986) The sequence of a large L1Md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Mol Cell Biol 6:168–182

    PubMed  CAS  Google Scholar 

  • Lundrigan BL, Jansa SA, Tucker PK (2002) Phylogenetic relationships in the genus mus, based on paternally, maternally, and biparentally inherited characters. Syst Biol 51:410–431

    Article  PubMed  Google Scholar 

  • Lyon MF (2000) LINE-1 elements and X chromosome inactivation: a function for “junk” DNA? Proc Natl Acad Sci U S A 97:6248–6249

    Article  PubMed  CAS  Google Scholar 

  • Marchal JA, Acosta MJ, Bullejos M, Puerma E, Díaz de la Guardia R, Sánchez A (2006) Distribution of L1-retroposons on the giant sex chromosomes of Microtus cabrerae (Arvicolidae, Rodentia): functional and evolutionary implications. Chromosome Res 14:177–186

    Article  PubMed  CAS  Google Scholar 

  • Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254:1808–1810

    Article  PubMed  CAS  Google Scholar 

  • Muotri AR, Marchetto MC, Coufal NG, Gage FH (2007) The necessary junk: new functions for transposable elements. Hum Mol Genet 16(Spec No. 2):R159–R167

    Article  PubMed  CAS  Google Scholar 

  • Prager EM, Tichy H, Sage RD (1996) Mitochondrial DNA sequence variation in the eastern house mouse, Mus musculus: Comparison with other house mice and report of a 75-bp tandem repeat. Genetics 143:427–446

    PubMed  CAS  Google Scholar 

  • Rebuzzini P, Martinelli P, Blasco M, Giulotto E, Mondello C (2007) Inhibition of gene amplification in telomerase deficient immortalized mouse embryonic fibroblasts. Carcinogenesis 28:553–559

    Article  PubMed  CAS  Google Scholar 

  • Redi CA, Garagna S, Della Valle G (1990) Differences in the organization and chromosomal allocation of satellite DNA between the European long tailed house mice Mus domesticus and Mus musculus. Chromosoma 99:11–17

    Article  PubMed  CAS  Google Scholar 

  • Sassaman DM, Dombroski BA, Moran JV et al (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16:37–43

    Article  PubMed  CAS  Google Scholar 

  • Schwartz A, Chan DC, Brown LG et al (1998) Reconstructing hominid Y evolution: X-homologous block, created by X-Y transposition, was disrupted by Yp inversion through LINE-LINE recombination. Hum Mol Genet 7:1–11

    Article  PubMed  CAS  Google Scholar 

  • She JX, Bonhomme F, Boursot P, Thaler L, Catzeflis F (1990) Molecular phylogenies in the Genus Mus—comparative analysis of electrophoretic, ScnDNA hybridization, and MtDNA RFLP data. Biol J Linn Soc 41:83–103

    Article  Google Scholar 

  • Solano E, Castiglia R, Corti M (2007) A new chromosomal race of the house mouse—Mus musculus domesticus—in the Vulcano Island-Aeolian Archipelago, Italy. Hereditas 144:75–77

    Article  PubMed  Google Scholar 

  • Song M, Boissinot S (2007) Selection against LINE-1 retrotransposons results principally from their ability to mediate ectopic recombination. Gene 390:206–213

    Article  PubMed  CAS  Google Scholar 

  • Spradling AC (1994) Transposable elements and the evolution of heterochromatin. Soc Gen Physiol Ser 49:69–83

    PubMed  CAS  Google Scholar 

  • Tucker PK, Sandstedt SA, Lundrigan BL (2005) Phylogenetic relationships in the subgenus Mus (genus Mus, family Muridae, subfamily Murinae): examining gene trees and species trees. Biol J Linn Soc 84:653–662

    Article  Google Scholar 

  • Usdin K, Chevret P, Catzeflis FM, Verona R, Furano AV (1995) L1 (LINE-1) retrotransposable elements provide a “fossil” record of the phylogenetic history of murid rodents. Mol Biol Evol 12:73–82

    PubMed  CAS  Google Scholar 

  • Vos JC, van Luenen HG, Plasterk RH (1993) Characterization of the Caenorhabditis elegans Tc1 transposase in vivo and in vitro. Genes Dev 7:1244–1253

    Article  PubMed  CAS  Google Scholar 

  • Waters PD, Dobigny G, Pardini AT, Robinson TJ (2004) LINE-1 distribution in Afrotheria and Xenarthra: implications for understanding the evolution of LINE-1 in eutherian genomes. Chromosoma 113:137–144

    Article  PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E et al (2002) Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Weiner AM (2002) SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 14:343–350

    Article  PubMed  CAS  Google Scholar 

  • Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821

    Article  PubMed  CAS  Google Scholar 

  • Yonekawa H, Moriwaki K, Gotoh O et al (1982) Origins of laboratory mice deduced from restriction patterns of mitochondrial DNA. Differentiation 22:222–226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by PRIN-COFIN 2005, Cariplo Foundation and FIRB 2005 (Project N.RBIP06FH7J) (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Garagna.

Additional information

Responsible Editor: Walther Traut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebuzzini, P., Castiglia, R., Nergadze, S.G. et al. Quantitative variation of LINE-1 sequences in five species and three subspecies of the subgenus Mus and in five Robertsonian races of Mus musculus domesticus . Chromosome Res 17, 65–76 (2009). https://doi.org/10.1007/s10577-008-9004-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-9004-z

Keywords

Navigation