Skip to main content
Log in

Influence of Membrane Receptor Lateral Diffusion on the Short-Term Depression of Acetylcholine-Induced Current in Helix Neurons

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We have studied how various drugs increasing the rate of nicotinic acetylcholine receptors (nAChRs) lateral diffusion affect the depression of ACh-induced current in land snail Helix lucorum neurons responsible for defensive behavior. The acetylcholine (ACh) iontophoretic application protocol imitated the behavioral habituation protocol for the intact animal. We found that the drugs decreasing cholesterol level in cell membranes as methyl-β-cyclodextrin 1 mM and Ro 48-8071 2 µM, and polyclonal antibodies to actin-binding proteins as spectrin 5 µg/ml and merlin 2.5 µg/ml have changed the dynamic of ACh-current depression. The nAChRs lateral diffusion coefficient was obtained by fluorescence recovery after photobleaching. A curve fitting model specially created for analysis of short-term choline sensitivity depression in snail neurons helped us evaluate separately the contribution of nAChRs lateral diffusion, their endocytosis and exocytosis to observed effects during electrophysiological experiments. Taken together, we hypothesize that nAChRs lateral diffusion plays an important role in the cellular correlate of habituation in land snail Helix lucorum neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

Chol:

Cholesterol

D:

Diffusion coefficient

LD:

Lateral diffusion

MβCD:

Methyl-β-cyclodextrin

nAChRs:

Nicotinic acetylcholine receptors

REndo:

Receptor endocytosis

RExo:

Receptor exocytosis

References

  • Angelides KJ, Elmer LW, Loftus D, Elson E (1988) Distribution and lateral mobility of voltage-dependent sodium channels in neurons. J Cell Biol 106:1911–1925

    Article  CAS  PubMed  Google Scholar 

  • Apodaca G (2001) Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic 2:149–159

    Article  CAS  PubMed  Google Scholar 

  • Baenziger JE, Morris ML, Darsaut TE, Ryan SE (2000) Effect of membrane lipid composition on the conformational equilibria of the nicotinic acetylcholine receptor. J Biol Chem 275:777–784

    Article  CAS  PubMed  Google Scholar 

  • Baines AJ (2010) The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. Protoplasma 244:99–131. doi:10.1007/s00709-010-0181-1

    Article  CAS  PubMed  Google Scholar 

  • Barrantes FJ (2014) Cell-surface translational dynamics of nicotinic acetylcholine receptors. Front Synaptic Neurosci 4:25. doi:10.3389/fnsyn

    Google Scholar 

  • Borroni V, Barrantes FJ (2011) Cholesterol modulates the rate and mechanism of acetylcholine receptor internalization. J Biol Chem 286:17122–17132. doi:10.1074/jbc.M110.211870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borroni V, Baier CJ, Lang T, Bonini I, White MM, Garbus I, Barrantes FJ (2007) Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane. Mol Membr Biol 24:1–15

    Article  CAS  PubMed  Google Scholar 

  • Brown FL, Leitner DM, McCammon JA, Wilson KR (2000) Lateral diffusion of membrane proteins in the presence of static and dynamic corrals: suggestions for appropriate observables. Biophys J 78:2257–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brusés JL, Chauvet N, Rutishauser U (2001) Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci 21:504–512

    PubMed  Google Scholar 

  • Cole BK, Curto M, Chan AW, McClatchey AI (2008) Localization to the cortical cytoskeleton is necessary for Nf2/merlin-dependent epidermal growth factor receptor silencing. Mol Cell Biol 28:1274–1284. doi:10.1128/MCB.01139-07

    Article  CAS  PubMed  Google Scholar 

  • Collingridge GL, Isaac JTR, Wang YT (2004) Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 5:952–962. doi:10.1038/nrn1556

    Article  CAS  PubMed  Google Scholar 

  • Cooper RA (1978) Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells. J Supramol Struct 8(4):413-430

  • Earnshaw BA, Bressloff PC (2008) Modeling the role of lateral membrane diffusion in AMPA receptor trafficking along a spiny dendrite. J Comput Neurosci 25:366–389. doi:10.1007/s10827-008-0084-8

    Article  CAS  PubMed  Google Scholar 

  • Fernandes CC, Berg DK, Gómez-Varela D (2010) Lateral mobility of nicotinic acetylcholine receptors on neurons is determined by receptor composition, local domain, and cell type. J Neurosci 30:8841–8851. doi:10.1523/JNEUROSCI.6236-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-González IM, Jaskolsk F, Goldberg Y, Ashby MC, Henley JM (2012) Measuring membrane protein dynamics in neurons using fluorescence recovery after photobleach. Methods Enzymol 504:127–146. doi:10.1016/B978-0-12-391857-4.00006-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Heidbreder M, Zander C, Malkusch S, Widera D, Kaltschmidt B, Kaltschmidt C, Nair D, Choquet D, Sibarita JB, Heilemann M (2012) TNF-α influences the lateral dynamics of TNF receptor I in living cells. Biochim Biophys Acta 1823:1984–1989. doi:10.1016/j.bbamcr.2012.06.026

    Article  CAS  PubMed  Google Scholar 

  • Hissa B, Pontes B, Roma PM, Alves AP, Rocha CD, Valverde TM, Aguiar PH, Almeida FP, Guimarães AJ, Guatimosim C, Silva AM, Fernandes MC, Andrews NW, Viana NB, Mesquita ON, Agero U, Andrade LO (2013) Membrane cholesterol removal changes mechanical properties of cells and induces secretion of a specific pool of lysosomes. PLoS ONE 8:e82988. doi:10.1371/journal.pone.0082988

    Article  PubMed  PubMed Central  Google Scholar 

  • Ierusalimsky VN, Zakharov IS, Palikhova TA, Balaban PM (1992) The nervous system and the mapping of the neurons in the gastropod Helix lucorum L. Zhurnal Vysshei Nervnoi Deiatelnosti Imeni I.P. Pavlova. 42:1075–1089

    Google Scholar 

  • Korade Z, Kenworthy AK (2008) Lipid rafts, cholesterol, and the brain. Neuropharmacology 55:1265–1273. doi:10.1016/j.neuropharm.2008.02.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korinek M, Vyklicky V, Borovska J, Lichnerova K, Kaniakova M, Krausova B, Krusek J, Balik A, Smejkalova T, Horak M, Vyklicky L (2015) Cholesterol modulates open probability and desensitization of NMDA receptors. J Physiol 593:2279–2293. doi:10.1113/jphysiol.2014.288209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lallemand D, Curto M, Saotome I, Giovannini M, McClatchey AI (2003) NF2-deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 17:1090–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenne P-F, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo X-J, Rigneault H, He H-T, Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25:3245–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Mafuvadze B, Aebi JD, Hyder SM (2016) Cholesterol biosynthesis inhibitor RO 48-8071 suppresses growth of hormone-dependent and castration-resistant prostate cancer cells. Onco Targets Ther 9:3223–3232. doi:10.2147/OTT.S105725

    PubMed  PubMed Central  Google Scholar 

  • Machnicka B, Grochowalska R, Bogusławska DM, Sikorski AF, Lecomte MC (2012) Spectrin-based skeleton as an actor in cell signaling Cell. Mol Life Sci 69:191–201. doi:10.1007/s00018-011-0804-5

    Article  CAS  Google Scholar 

  • Makhnovskii DA, Tretyakova MS, Murzina GB, Pivovarov AS (2011) Endocytosis of cholinoreceptors in the mechanism of the depression of the cholinosensitivity of neurons in the common Snail in a cellular model of habituation. Neurosci Behav Physiol 41:617–625. doi:10.1007/s11055-011-9464-z

    Article  CAS  Google Scholar 

  • Makhnovskii DA, Murzina GB, Tretyakova MS, Pivovarov AS (2013) The role of serine/threonine and tyrosine protein kinases in depression of the cholinosensitivity of neurons in the common snail in a cellular correlate of habituation. Neurosci Behav Physiol 43:22–33. doi:10.1007/s11055-012-9686-8

    Article  CAS  Google Scholar 

  • Makhnovskiy DA, Murzina GB, Pivovarov AS (2012) Cholinergic receptor exocytosis under conditions of depression of acetylcholine-induced current in edible snail neurons in cellular analogue of habituation. Bull Exp Biol Med 153:424–427

    Article  CAS  PubMed  Google Scholar 

  • Mark M, Muller P, Maier R, Eisele B (1996) Effects of a novel 2,3-oxidosqualene cyclase inhibitor on the regulation of cholesterol biosynthesis in HepG2 cells. J Lipid Res 37:148–158

    CAS  PubMed  Google Scholar 

  • McCartney BM, Kulikauskas RM, LaJeunesse DR, Fehon RG (2000) The Neurofibromatosis-2 homologue, Merlin, and the tumor suppressor expanded function together in Drosophila to regulate cell proliferation and differentiation. Development 127:1315–1324

    CAS  PubMed  Google Scholar 

  • Michaely P, Kamal A, Anderson RGW, Bennett VB (1999) A requirement for ankyrin binding to clathrin during coated pit budding. J Biol Chem 274:35908–35913

    Article  CAS  PubMed  Google Scholar 

  • Murzina GB (2010) The possible mechanisms of acetylcholine receptor desensitization. Zh Vyssh Nerv Deiat Im I P Pavlova 60:279–295

    CAS  PubMed  Google Scholar 

  • Murzina GB (2013) Influence of lateral diffusion on depression of neural cholinsensitivity. Biophys 58:402–406

    Article  CAS  Google Scholar 

  • Murzina GB, Pivovarov AS, Makhnovsky DA (2016) Recovery of acetylcholine-induced current in molluscan neurons during paired-pulse stimulation: analysis using a mathematical model. Biophys 61:112–119

    Article  Google Scholar 

  • Nakamura N, Oshiro N, Fukata Y, Amano M, Fukata M, Kuroda S, Matsuura Y, Leung T, Lim L, Kaibuchi K (2000) Phosphorylation of ERM proteins at filopodia induced by Cdc42. Genes Cells 5:571–581

    Article  CAS  PubMed  Google Scholar 

  • Olkkonen VM, Hynynen R (2009) Interactions with membranes and proteins. Mol Aspects Med 30:123–133. doi:10.1016/j.mam.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  • Oyola-Cintro´ J, Caballero-Rivera D, Ballester L, Carlos A, Bae´z-Paga´n CA, Martínez HL, Ve´lez-Arroyo KP, Quesada OA, Lasalde-Dominicci JA (2015) Lateral diffusion, function, and expression of the slow channel congenital myasthenia syndrome C418 W nicotinic receptor mutation with changes in lipid raft components. J Biol Chem 290:26790–26800. doi:10.1074/jbc.M115.678573

  • Palikhova TA, Abramova MS, Pivovarov AS (2006) Cholinergic sensory inputs to command neurons in edible snail. Bull Exp Biol Med 142:275–278. doi:10.1007/s10517-006-0345-3

    Article  CAS  PubMed  Google Scholar 

  • Papal S, Cortese M, Legendre K, Sorusch N, Dragavon J, Sahly I, Shorte S, Wolfrum U, Petit C, El-Amraoui A (2013) The giant spectrin bV couples the molecular motors to phototransduction and usher syndrome type I proteins along their trafficking route. Hum Mol Genet 22:3773–3788. doi:10.1093/hmg/ddt228

    Article  CAS  PubMed  Google Scholar 

  • Pavin N, Tolirc-Norrelykke IM (2013) Dynein, microtubule and cargo: a Ménage a trios. Biochem Soc Trans 41:1731–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pivovarov AS, Drozdova EI (1992) Identification of cholinoreceptors on the soma of snail neurons RPa3 and LPa3. Neurophysioljgy 24:61–69. doi:10.1007/BF01053484

    Article  Google Scholar 

  • Rotter B, Kroviarski Y, Nicolas G, Dhermy D, Lecomte MC (2004) Alpha II-spectrin is an in vitro target for caspase-2, and its cleavage is regulated by calmodulin binding. Biochem J 378:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd JD, Huganir RL (2007) The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 23:613–643

    Article  CAS  PubMed  Google Scholar 

  • Stanly TA, Fritzsche M, Banerji S, Garcıá E, Bernardino de la Serna J, Jackson DJ, Eggeling C (2016) Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters. Biol Open 5:1343–1350. doi:10.1242/bio.019943

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun M, Northup N, Marga F, Huber T, Byfield FJ, Levitan I, Forgacs G (2007) The effect of cellular cholesterol on membrane cytoskeleton adhesion. J Cell Sci 120:2223–2231

    Article  CAS  PubMed  Google Scholar 

  • Tardin C, Cognet L, Bats C, Lounis B, Choquet D (2003) Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J 2:4656–4665

    Article  Google Scholar 

  • Ter-Markaryan AG, Palikhova TA, Sokolov EN (1991) Effect of atropine and d-tubocurarine on the monosynaptic connections between identified neurons in the central nervous system of the edible snail. Neurosci Behav Physiol 21:37–38. doi:10.1007/BF01184236

    Article  CAS  PubMed  Google Scholar 

  • Triller A, Choquet D (2005) Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci 28:133–139. doi:10.1016/j.tins.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  • Yogesha SD, Sharff AJ, Giovannini M, Bricogne G, Izard T (2011) Unfurling of the band 4.1, ezrin, radixin, moesin (FERM) domain of the merlin tumor suppressor. Protein Sci 20:2113–2120. doi:10.1002/pro.751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamir O, Charlton MP (2006) Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions. J Physiol 571:83–99

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Foundation for Basic Research, Project # 16-04-00099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady S. Pivovarov.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyeva, N.A., Murzina, G.B., Kireev, I.I. et al. Influence of Membrane Receptor Lateral Diffusion on the Short-Term Depression of Acetylcholine-Induced Current in Helix Neurons. Cell Mol Neurobiol 37, 1443–1455 (2017). https://doi.org/10.1007/s10571-017-0475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0475-3

Keywords

Navigation