Skip to main content

Advertisement

Log in

Elucidating the characteristics of a promising nitrate ester polysaccharide derived from shrimp shells and its blends with cellulose nitrate

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Recently, polysaccharides have attracted tremendous interest as potential candidates to develop promising high-energy dense polymers through the chemical functionalization of their structures. Therefore, chitosan nitrate (CSN), as an energetic polysaccharide was fabricated by nitration of chitosan (CS) derived from shrimp Parapenaeus longirostris shells. The physicochemical, structural, and thermal features of the designed energetic CSN and its precursors were elucidated by density measurements, elemental analysis, FTIR, SEM, TGA, and DSC experiments. The mechanical sensitivities and calorific energy of the produced CSN were also determined and its theoretical detonation performance was computed using the EXPLO5 V6.04 software. The results demonstrated the efficiency of the performed method to produce the desired CSN with attractive characteristics such as a density of 1.701 g/cm3, nitration content of 16.55%, impact sensitivity of 15 J, heat of combustion of 10,610 J/g, detonation velocity of 7764 m/s, and specific impulse of 242 s, which are better than those of commonly used nitrocellulose (NC). Besides that, new energetic CSN/NC polymer blends with different mass ratios (CSN:NC (wt%) = 25:75, 50:50, and 75:25) were elaborated and characterized in terms of their chemical structure, thermal behavior, and energetic performance. Experimental findings highlighted the attractive properties of the developed CSN/NC blends, providing evidence for the excellent synergistic effect between energetic CSN and NC polymers. Finally, this work established that shrimp shells wastes could serve as valuable biomass for the production of promising insensitive and high-energy dense polysaccharide, which is expected to be widely employed in the next generation of energetic formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article.

References

  • Ahmad A, Mubarak N, Naseem K, Tabassum H, Rizwan M, Najda A, Kashif M, Bin-Jumah M, Hussain A, Shaheen A (2020) Recent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: critical approach to clinical research. Arab J Chem 13(12):8935–8964

    Article  CAS  Google Scholar 

  • Barbosa HF, Francisco DS, Ferreira AP, Cavalheiro ÉT (2019) A new look towards the thermal decomposition of chitins and chitosans with different degrees of deacetylation by coupled TG-FTIR. Carbohydr Polym 225:115232

    Article  PubMed  Google Scholar 

  • Begum S, Yuhana NY, Saleh NM, Kamarudin NHN, Sulong AB (2021) Review of chitosan composite as a heavy metal adsorbent: material preparation and properties. Carbohydr Polym 259:117613

    Article  CAS  PubMed  Google Scholar 

  • Ben Seghir B, Benhamza M (2017) Preparation, optimization and characterization of chitosan polymer from shrimp shells. J Food Meas Charact 11(3):1137–1147

    Article  Google Scholar 

  • Benhabiles M, Salah R, Lounici H, Drouiche N, Goosen M, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29(1):48–56

    Article  CAS  Google Scholar 

  • Benhammada A, Trache D, Kesraoui M, Chelouche S (2020) Hydrothermal synthesis of hematite nanoparticles decorated on carbon mesospheres and their synergetic action on the thermal decomposition of nitrocellulose. Nanomaterials 10(5):968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betzler FM, Hartdegen VA, Klapötke TM, Sproll SM (2016) A new energetic binder: glycidyl nitramine polymer. Cent Eur J Energ Mater 13(2):289–300

    Article  CAS  Google Scholar 

  • Bhardwaj S, Bhardwaj NK, Negi YS (2021) Surface coating of chitosan of different degree of acetylation on non surface sized writing and printing grade paper. Carbohydr Polym 269:117674

    Article  CAS  PubMed  Google Scholar 

  • Chalghoum F, Trache D, Benziane M, Chelouche S (2022) Effect of complex metal hydride on the thermal decomposition behavior of AP/HTPB-based aluminized solid rocket propellant. J Therm Anal Calorim 147(20):11507–11534

    Article  CAS  Google Scholar 

  • Chen F, Wang Y, Zhang Q (2022) Recent advances in the synthesis and properties of energetic plasticizers. New J Chem 46(43):20540–20553

    Article  CAS  Google Scholar 

  • da Silva Lucas AJ, Oreste EQ, Costa HLG, Lopez HM, Saad CDM, Prentice C (2021) Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects. Food Chem 343:128550

    Article  Google Scholar 

  • Doğdu SA, Turan C, Depci T (2021) Extraction and characterization of chitin and Chitosan from invasive alien swimming crab Charybdis longicollis. Nat Eng Sci 6(2):96–101

    Google Scholar 

  • Domszy JG, Roberts GA (1985) Evaluation of infrared spectroscopic techniques for analysing chitosan. Die Makromol Chem Macromol Chem Phys 186(8):1671–1677

    Article  CAS  Google Scholar 

  • Dou J, Xu M, Tan B, Lu X, Mo H, Wang B, Liu N (2022) Research progress of nitrate ester binders. Fire Phys Chem 3(1):54–77

    Google Scholar 

  • El Knidri H, Belaabed R, Addaou A, Laajeb A, Lahsini A (2018) Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromol 120:1181–1189

    Article  PubMed  Google Scholar 

  • Elbasuney S, Fahd A, Mostafa HE (2017) Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture. Fuel 208:296–304

    Article  CAS  Google Scholar 

  • Flórez M, Guerra-Rodríguez E, Cazón P, Vázquez M (2022) Chitosan for food packaging: recent advances in active and intelligent films. Food Hydrocoll 124:107328

    Article  Google Scholar 

  • Francis AO, Zaini MAA, Muhammad IM, Abdulsalam S, El-Nafaty UAJBC, Biorefinery (2021) Physicochemical modification of chitosan adsorbent: a perspective. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01599-3

    Article  Google Scholar 

  • Guo M, Ma Z, He L, He W, Wang Y (2017) Effect of varied proportion of GAP-ETPE/NC as binder on thermal decomposition behaviors, stability and mechanical properties of nitramine propellants. J Therm Anal Calorim 130(2):909–918

    Article  CAS  Google Scholar 

  • Huet G, Hadad C, González-Domínguez JM, Courty M, Jamali A, Cailleu D, van Nhien AN (2021) IL versus DES: impact on chitin pretreatment to afford high quality and highly functionalizable chitosan. Carbohydr Polym 269:118332

    Article  CAS  PubMed  Google Scholar 

  • Jha PK, Halada GP, McLennan SM (2013) Electrochemical synthesis of nitro-chitosan and its performance in chromium removal. Coatings 3(3):140–152

    Article  Google Scholar 

  • Joseph SM, Krishnamoorthy S, Paranthaman R, Moses J, Anandharamakrishnan C (2021) A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr Polym Technol Appl 2:100036

    CAS  Google Scholar 

  • Kasaai MR (2008) A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydr Polym 71(4):497–508

    Article  CAS  Google Scholar 

  • Kaya M, Baran T, Mentes A, Asaroglu M, Sezen G, Tozak KO (2014) Extraction and characterization of α-chitin and chitosan from six different aquatic invertebrates. Food Biophys 9(2):145–157

    Article  Google Scholar 

  • Kumari S, Annamareddy SHK, Abanti S, Rath PK (2017) Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int J Biol Macromol 104:1697–1705

    Article  CAS  PubMed  Google Scholar 

  • Lavall RL, Assis OB, Campana-Filho SP (2007) β-Chitin from the pens of Loligo sp.: extraction and characterization. Bioresour Technol 98(13):2465–2472

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li H, Xu K (2020) High-substitute Nitrochitosan used as energetic materials: Preparation and Detonation Properties. Carbohydr Polym 237:116176

    Article  CAS  PubMed  Google Scholar 

  • Liakos EV, Lazaridou M, Michailidou G, Koumentakou I, Lambropoulou DA, Bikiaris DN, Kyzas GZ (2021) Chitosan adsorbent derivatives for pharmaceuticals removal from effluents: a review. Macromol 1(2):130–154

    Article  CAS  Google Scholar 

  • Liu H, Zhang L (2001) Structure and properties of semiinterpenetrating polymer networks based on polyurethane and nitrochitosan. J Appl Polym Sci 82(12):3109–3117

    Article  CAS  Google Scholar 

  • Luo T, Wang Y, Huang H, Shang F, Song X (2019) An electrospun preparation of the NC/GAP/nano-LLM-105 nanofiber and its properties. Nanomaterials 9(6):854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Q, Hong J, Xu H, Han S, Tan H, Wang Q, Tao J, Ma N, Cheng Y, Su H (2020) Hygroscopicity of amino acids and their effect on the water uptake of ammonium sulfate in the mixed aerosol particles. Sci Total Environ 734:139318

    Article  CAS  PubMed  Google Scholar 

  • Marei NH, Abd El-Samie E, Salah T, Saad GR, Elwahy AHJIjobm (2016) Isolation and characterization of chitosan from different local insects in Egypt. Int J Biol Macromol 82:871–877

    Article  CAS  PubMed  Google Scholar 

  • Mezroua A, Hamada RA, Brahmine KS, Abdelaziz A, Tarchoun AF, Boukeciat H, Bekhouche S, Bessa W, Benhammada A, Trache D (2022) Unraveling the role of ammonium perchlorate on the thermal decomposition behavior and kinetics of NC/DEGDN energetic composite. Thermochim Acta 716:179305

    Article  CAS  Google Scholar 

  • Mohan K, Ganesan AR, Muralisankar T, Jayakumar R, Sathishkumar P, Uthayakumar V, Chandirasekar R, Revathi N (2020) Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci Technol 105:17–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty AK, Wu F, Mincheva R, Hakkarainen M, Raquez J-M, Mielewski DF, Narayan R, Netravali AN, Misra M (2022) Sustainable polymers. Nat Rev Methods Prim 2(1):1–27

    Google Scholar 

  • Muñoz-Nuñez C, Cuervo-Rodríguez R, Echeverría C, Fernández-García M, Muñoz-Bonilla A (2022) Synthesis and characterization of thiazolium chitosan derivative with enhanced antimicrobial properties and its use as component of chitosan based films. Carbohydr Polym 302:120438

    Article  PubMed  Google Scholar 

  • Muravyev NV, Wozniak DR, Piercey DG (2022) Progress and performance of energetic materials: open dataset, tool, and implications for synthesis. J Mater Chem A 10(20):11054–11073

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2021) Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: a review. Carbohydr Polym 251:116986

    Article  CAS  PubMed  Google Scholar 

  • Negm NA, Hefni HH, Abd-Elaal AA, Badr EA, Abou Kana MT (2020) Advancement on modification of chitosan biopolymer and its potential applications. Int J Biol Macromol 152:681–702

    Article  CAS  PubMed  Google Scholar 

  • Olaosebikan AO, Kehinde OA, Tolulase OA, Victor EB (2021) Extraction and characterization of chitin and chitosan from callinectes amnicola and penaeus notialis shell wastes. J Chem Eng Mater Sci 12(12):1–30

    Article  Google Scholar 

  • Pal K, Bharti D, Sarkar P, Anis A, Kim D, Chałas R, Maksymiuk P, Stachurski P, Jarzębski M (2021) Selected applications of chitosan composites. Int J Mol Sci 22(20):10968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phuong PTD, Trung TS, Stevens WF, Minh NC, Bao HND, Hoa NV (2022) Valorization of heavy waste of modern intensive shrimp farming as a potential source for chitin and chitosan production. Waste Biomass Valoriz 13(2):823–830

    Article  CAS  Google Scholar 

  • Rahman NA, Abu Hanifah S, Mobarak NN, Su’ait MS, Ahmad A, Shyuan LK, Khoon LT (2019) Synthesis and characterizations of o-nitrochitosan based biopolymer electrolyte for electrochemical devices. PLoS ONE 14(2):e0212066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashki S, Asgarpour K, Tarrahimofrad H, Hashemipour M, Ebrahimi MS, Fathizadeh H, Khorshidi A, Khan H, Marzhoseyni Z, Salavati-Niasari M (2021) Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym 251:117108

    Article  CAS  PubMed  Google Scholar 

  • Rasweefali M, Sabu S, Sunooj K, Sasidharan A, Xavier KM (2021) Consequences of chemical deacetylation on physicochemical, structural and functional characteristics of chitosan extracted from deep-sea mud shrimp. Carbohydr Polym Technol Appl 2:100032

    CAS  Google Scholar 

  • Reshmy R, Philip E, Madhavan A, Sirohi R, Pugazhendhi A, Binod P, Awasthi MK, Vivek N, Kumar V, Sindhu R (2022) Lignocellulose in future biorefineries: strategies for cost-effective production of biomaterials and bioenergy. Bioresour Technol 344:126241

    Article  CAS  PubMed  Google Scholar 

  • Saravana PS, Ho TC, Chae S-J, Cho Y-J, Park J-S, Lee H-J, Chun B-S (2018) Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste. Carbohydr Polym 195:622–630

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan H, Kanayairam V, Ravichandran RJIjobm (2018) Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cell line, PA-1. Int J Biol Macromol 107:662–667

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Yin Z, Chinnam AK, Staples RJ, Shreeve JnM (2020) A duo and a trio of triazoles as very thermostable and insensitive energetic materials. Inorg Chem 59(23):17766–17774

    Article  CAS  PubMed  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM (2019a) Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization. Int J Biol Macromol 138:837–845

    Article  CAS  PubMed  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Derradji M, Bessa W (2019b) Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose 26(13–14):7635–7651

    Article  CAS  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Belmerabet M, Abdelaziz A, Derradji M, Belgacemi R (2020a) Synthesis, characterization, and thermal decomposition kinetics of nitrogen-rich energetic biopolymers from aminated giant reed cellulosic fibers. Ind Eng Chem Res 59(52):22677–22689

    Article  CAS  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Krumm B (2020b) New insensitive nitrogen-rich energetic polymers based on amino-functionalized cellulose and microcrystalline cellulose: synthesis and characterization. Fuel 277:118258

    Article  CAS  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Krumm B, Khimeche K, Mezroua A (2020c) A promising energetic biopolymer based on azide-functionalized microcrystalline cellulose: synthesis and characterization. Carbohydr Polym 249:116820

    Article  CAS  PubMed  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Abdelaziz A, Derradji M, Bekhouche S (2021a) Chemical design and characterization of cellulosic derivatives containing high-nitrogen functional groups: towards the next generation of energetic biopolymers. Def Technol 18(4):537–546

    Article  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Selmani A, Saada M, Chelouche S, Mezroua A, Abdelaziz A (2021b) New insensitive high-energy dense biopolymers from giant reed cellulosic fibers: their synthesis, characterization, and non-isothermal decomposition kinetics. New J Chem 45(11):5099–5113

    Article  CAS  Google Scholar 

  • Tarchoun AF, Trache D, Abdelaziz A, Harrat A, Boukecha WO, Hamouche MA, Boukeciat H, Dourari M (2022a) Elaboration, characterization and thermal decomposition kinetics of new nanoenergetic composite based on hydrazine 3-Nitro-1, 2, 4-triazol-5-one and nanostructured cellulose nitrate. Molecules 27(20):6945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarchoun AF, Trache D, Hamouche MA, Bessa W, Abdelaziz A, Boukeciat H, Bekhouche S, Belmehdi D (2022b) Insights into characteristics and thermokinetic behavior of potential energy-rich polysaccharide based on chitosan. Cellulose 29(15):8085–8101

    Article  CAS  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Abdelaziz A, Bekhouche S, Boukeciat H, Sahnoun N (2022c) Making progress towards promising energetic cellulosic microcrystals developed from alternative lignocellulosic biomasses. J Energ Mater. https://doi.org/10.1080/07370652.2022.2032484

    Article  Google Scholar 

  • Tarchoun AF, Trache D, Klapötke TM, Slimani K, Belouettar Be, Abdelaziz A, Bekhouche S, Bessa W (2022d) Valorization of esparto grass cellulosic derivatives for the development of promising energetic azidodeoxy biopolymers: synthesis, characterization and isoconversional thermal kinetic analysis. Propellants Explos Pyrotech 47(3):e202100293

    Article  CAS  Google Scholar 

  • Teli M, Sheikh JJIjobm (2012) Extraction of chitosan from shrimp shells waste and application in antibacterial finishing of bamboo rayon. Int J Biol Macromol 50:1195–12005

    Article  CAS  PubMed  Google Scholar 

  • Touidjine S, Boulkadid KM, Trache D, Belkhiri S, Mezroua A (2022) Preparation and characterization of polyurethane/nitrocellulose blends as binder for composite solid propellants. Propellants Explos Pyrotech 47(1):e202000340

    Article  CAS  Google Scholar 

  • Trache D, Tarchoun AF (2019) Differentiation of stabilized nitrocellulose during artificial aging: spectroscopy methods coupled with principal component analysis. J Chemom 33(8):e3163

    Article  Google Scholar 

  • Trung TS, Van Tan N, Van Hoa N, Minh NC, Loc PT, Stevens WF (2020) Improved method for production of chitin and chitosan from shrimp shells. Carbohydr Res 489:107913

    Article  PubMed  Google Scholar 

  • Wang Y, Song X, Song D, Liang L, An C, Wang J (2016) Synthesis, thermolysis, and sensitivities of HMX/NC energetic nanocomposites. J Hazard Mater 312:73–83

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Feng Y, Qi X, Deng M, Tian J, Zhang Q (2018) Designing explosive poly (ionic liquid) s as novel energetic polymers. Chem A Eur J 24(59):15897–15902

    Article  CAS  Google Scholar 

  • Wu Q, Ma Q, Zhang Z, Yang W, Gou S, Huang J, Fan G (2020) Combustion and catalytic performance of metal-free heat-resistant energetic polymeric materials. Chem Eng J 399:125739

    Article  CAS  Google Scholar 

  • Yan Q-L, Cohen A, Chinnam AK, Petrutik N, Shlomovich A, Burstein L, Gozin M (2016) A layered 2D triaminoguanidine–glyoxal polymer and its transition metal complexes as novel insensitive energetic nanomaterials. J Mater Chem A 4(47):18401–18408

    Article  CAS  Google Scholar 

  • Yuan Y, Hong S, Lian H, Zhang K, Liimatainen H (2020) Comparison of acidic deep eutectic solvents in production of chitin nanocrystals. Carbohydr Polym 236:116095

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chen P, Huang J, Yang G, Zheng L (2003) Ways of strengthening biodegradable soy-dreg plastics. J Appl Polym Sci 88(2):422–427

    Article  CAS  Google Scholar 

  • Zhang W, Qin Z, Yi J, Chen S, Xu K (2022) Laser ignition and combustion properties of composite with high-substituted nitrochitosan and nano-Ti powder. Combust Flame 240:112056

    Article  CAS  Google Scholar 

  • Zhao D, Huang W-C, Guo N, Zhang S, Xue C, Mao X (2019) Two-step separation of chitin from shrimp shells using citric acid and deep eutectic solvents with the assistance of microwave. Polymers 11(3):409

    Article  PubMed  PubMed Central  Google Scholar 

  • Aili D, Arbia W, Adour L (2017) Treatment of colored waters by beads chitosan, extracted from shrimp waste. In: International symposium on materials and sustainable development. Springer, Cham, p 492–505

  • NATO SA (1999) 4489 (STANAG 4489), explosives. Impact Sensitivity Tests

  • NATO SA (2002) 4487 (STANAG 4487), explosives. Friction Sensitivity Tests

  • Sućeska M (2017) EXPLO5 V6. Brodarski Institute: Zagreb, p 04

Download references

Acknowledgments

Financial support of this research by the Ecole Militaire Polytechnique is gratefully acknowledged.

Funding

The authors declare that they have received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

A.F.T.: Conceptualization, Methodology, Resources, Investigation, data treatment, Writing-Original Draft. D.T.: Conceptualization, Review & Editing. A.H., A.A., H.B., I.C., S.T. and T.M.K.: Review & Editing the manuscript draft. All authors have approved the final version of the article.

Corresponding authors

Correspondence to Ahmed Fouzi Tarchoun or Djalal Trache.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

All authors state that they adhere to the Ethical Responsibilities of Authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarchoun, A.F., Trache, D., Hamouche, M.A. et al. Elucidating the characteristics of a promising nitrate ester polysaccharide derived from shrimp shells and its blends with cellulose nitrate. Cellulose 30, 4941–4955 (2023). https://doi.org/10.1007/s10570-023-05200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05200-0

Keywords

Navigation