Skip to main content
Log in

Characterization of the supramolecular structures of cellulose nanocrystals of different origins

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Properties of cellulose nanocrystals (CNCs) depend upon their supramolecular structures, which are important to understand in order to optimize their applications. In this investigation, the structures of CNCs produced upon 48–64% H2SO4 hydrolysis of hydrothermally-treated poplar, bleached kraft pulp, cotton microcrystalline cellulose, bacterial cellulose, tunicin, and cladophora cellulose were comparatively analyzed. TEM provided information on the morphological aspects. Raman, MAS-NMR, and XRD provided information on one aspect of the supramolecular organization, namely, crystallinity (CrI). Other characteristics of supramolecular structure were analyzed by various Raman methods, namely, accessibility to water, exocyclic CH2OH conformation ratio, and chain conformation disorder (CCONDIS)—the last method was developed in the present study. In general, CNCs retained the crystallinity of the starting material irrespective of the measurement method of CrI. Additionally, it was found that crystallite size and supramolecular organization influenced CrI as well. These analyses further indicated that poplar- and pulp-CNCs had significantly higher water accessibility as compared with CNCs from cladophora, bacterial, tunicin, and cotton MCC CNCs, implying higher molecular disorder, which was also reflected in measurements of CH2OH conformation ratio and CCONDIS. The findings indicate that significant differences among the CNCs seem to arise largely from differences between the starting materials. Additionally, considering that CNCs can have very different morphologies and structural properties depending upon how they are produced, the analyses carried out here can characterize such CNCs and estimate their applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616

    Article  CAS  PubMed  Google Scholar 

  • Agarwal UP (2017) Raman spectroscopy in the analysis of cellulose nanomaterials, In: Agarwal UP, Atalla RH, Isogai A (eds.) Nanocelluloses: their preparation, properties, and applications, ACS symp. Series, American Chemical Society, pp 75–90

  • Agarwal UP, Ralph SA, Baez C, Reiner RS, Verrill SP (2017) Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24:1971–1924

    Article  CAS  Google Scholar 

  • Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144

    Article  CAS  Google Scholar 

  • Agarwal UP, Ralph SA, Reiner RS, Hunt CG, Baez C, Ibach R, Hirth KC (2018a) Production of high lignin-containing and lignin-free cellulose nanocrystals from wood. Cellulose 25:5791–5805

    Article  CAS  Google Scholar 

  • Agarwal UP, Ralph SA, Reiner RS, Baez C (2018) New cellulose crystallinity estimation method that differentiates between organized and crystalline phases. Carbohydr Polym 190:260–270

    Article  Google Scholar 

  • Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733

    Article  CAS  Google Scholar 

  • Agarwal UP, Reiner RS, Ralph SA (2013) Estimation of cellulose crystallinity of lignocelluloses using near-IR FT–Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. J Agric Food Chem 61:103–113

    Article  CAS  PubMed  Google Scholar 

  • Angle´s MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353

    Article  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261

    Article  CAS  Google Scholar 

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  PubMed  Google Scholar 

  • Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25:7675–7685

    Article  CAS  PubMed  Google Scholar 

  • Azizi MASA, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    Article  Google Scholar 

  • Bian H, Chen L, Dai H, Zhu JY (2017) Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr Polym 167:167–176

    Article  CAS  PubMed  Google Scholar 

  • Bondeson D, Mathew AP, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Brinkmann A, Chen M, Couillard M, Jakubek ZJ, Leng T, Johnston LJ (2015) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114

    Article  Google Scholar 

  • Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762

    Article  CAS  Google Scholar 

  • Chen L, Zhu JY, Baez C, Kitin P, Elder T (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843

    Article  CAS  Google Scholar 

  • Chi K, Catchmark JM (2017) The influences of added polysaccharides on the properties of bacterial crystalline nanocellulose. Nanoscale 9:15144–15158

    Article  CAS  PubMed  Google Scholar 

  • Dahlke B, Larbig H, Scherzer HD, Poltrock R (1998) Natural fiber reinforced foams based on renewable resources for automotive interior applications. J Cell Plastics 34:361–379

    Article  CAS  Google Scholar 

  • Domingues R, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15:2327–2346

    Article  CAS  Google Scholar 

  • Dunlop MJ, Acharya B, Bissessur R (2020) Study of plant and tunicate based nanocrystalline cellulose in hybrid polymeric nanocomposites. Cellulose 27:249–261

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65

    Article  CAS  Google Scholar 

  • Fang L, Catchmark JM (2014) Structure characterization of native cellulose during dehydration and rehydration. Cellulose 21:3951–3963

    Article  CAS  Google Scholar 

  • Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichhorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679

    Article  CAS  PubMed  Google Scholar 

  • Frost B, Foster EJ (2019) Replication of annulus fibrosus through fabrication and characterization of polyurethane and cellulose nanocrystal composite scaffolds. Nanocomposites 5:13–27

    Article  CAS  Google Scholar 

  • Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87:1026–1037

    Article  CAS  Google Scholar 

  • Goetz L, Mathew A, Oksman K, Gatenholm P, Ragauskas AJ (2009) A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydr Polym 75:85–89

    Article  CAS  Google Scholar 

  • Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    Article  CAS  PubMed  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611

    Article  CAS  Google Scholar 

  • Hirai A, Inui O, Horii F, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502

    Article  CAS  PubMed  Google Scholar 

  • Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212

    Article  CAS  Google Scholar 

  • Horikawa Y, Shimizu M, Saito T, Isogai A, Imai T, Sugiyama J (2018) Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis. Int J Biol Macromol 109:569–575

    Article  CAS  PubMed  Google Scholar 

  • Horii F, Hirai A, Kitamaru R (1983) Solid-state 13C-MAS-NMR study of conformations of oligosaccharides and cellulose—conformation of CH2OH group about the exo-cyclic C–C bond. Polym Bull 10:357–361

    Article  CAS  Google Scholar 

  • Howsmon JA, Marchessault RH (1959) The ball-milling of cellulose fibers and recrystallization effects. J Appl Polym Sci I:313–322

    Article  Google Scholar 

  • Hult E-L, Larsson PT, Iversen T (2000) A comparative CP/MAS 13C-MAS-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55

    Article  CAS  Google Scholar 

  • Hult E-L, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Jiang F, Hsich Y-L (2017) Rice straw nanocelluloses: process-linked structures, properties, and self-assembling into ultra-fine fibers. In: Agarwal UP, Atalla RH, Isogai A (eds) Nanocelluloses: their preparation, properties, and applications, ACS Symp. Series, American Chemical Society, pp 133–150

  • Jorfi M, Roberts MN, Foster EJ, Weder C (2013) Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications. ACS Appl Mater Interfaces 5:1517–1526

    Article  CAS  PubMed  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Kose O, Tran A, Lewis L, Hamad WY, MacLachlan MJ (2019) Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics. Nat Commun 10:510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvien I, Tanem BS, Oksman K (2005) Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6:3160–3165

    Article  CAS  PubMed  Google Scholar 

  • Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C MAS-NMR investigation of molecular ordering in celluloses. Carbohydr Res 302:19–25

    Article  CAS  Google Scholar 

  • Lemke CH, Dong RY, Michal CA, Hamad WY (2012) New insights into nano-crystalline cellulose structure and morphology based on solid-state MAS-NMR. Cellulose 19:1619–1629

    Article  CAS  Google Scholar 

  • Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393

    Article  CAS  PubMed  Google Scholar 

  • Lindner B, Petridis L, Langan P, Smith JC (2014) Determination of cellulose crystallinity from powder diffraction diagrams. Biopolymers 103:67–73

    Article  Google Scholar 

  • Ling Z, Wang T, Makarem M, Santiago Cintro´n M et al (2019) Effects of ball milling on the structure of cotton cellulose. Cellulose 26:305–328

    Article  CAS  Google Scholar 

  • Lu Y, Weng L, Cao X (2006) Morphological thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204

    Article  CAS  Google Scholar 

  • Mao J, Abushammala H, Brown N, Laborie MP (2017) Comparative Assessment of Methods for Producing Cellulose I Nanocrystals from Cellulosic Sources. In: Agarwal UP, Atalla RH, Isogai A (eds) Nanocelluloses: their preparation, properties, and applications, ACS symp. Series, American Chemical Society, pp 19–53

  • Mokhena TC, John MJ (2020) Cellulose nanomaterials: new generation materials for solving global issues. Cellulose 27:1149–1194

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Nanko H, Button A, Hillman D (2005) The World of Market Pulp, WOMP LLC, Appleton WI

  • Natterodt JC, Sapkota J, Foster JE, Weder C (2017) Polymer nanocomposites with cellulose nanocrystals featuring adaptive surface groups. Biomacromolecules 18:517–525

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  PubMed  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Poaty B, Vardanyan V, Wilczak L, Chauve G, Riedl B (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Org Coat 77:813–820

    Article  CAS  Google Scholar 

  • Program, ImageJ, https://imagej.nih.gov/ij/

  • Reiner RS, Rudie AW (2013) production and applications of cellulose material. In: Postek MT, Moon RJ, Rudie AJ, Bilodeau MA (eds), TAPPI Press, Atlanta, pp 21–24

    Google Scholar 

  • Sabo RC, Yermakov A, Law CT, Elhajjar R (2016) Nanocellulose-enabled electronics, energy harvesting devices, smart materials and sensors: A review. J Renew Mater 4:297–312

    Article  CAS  Google Scholar 

  • Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138

    Article  CAS  PubMed  Google Scholar 

  • Smyth M, Rader C, Bras J, Foster EJ (2018) Characterization and mechanical properties of ultraviolet stimuli-responsive functionalized cellulose nanocrystal alginate composites. J Appl Polym Sci 135:45857

    Article  Google Scholar 

  • Vanderfleet OM, Reid MS, Bras J, Heux L, Godoy-Vargas J, Panga MKR, Cranston ED (2019) Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose 26:507–528

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native. Cellulose 4:221–232

    Article  CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493

    Article  CAS  Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of noncrystalline forms in cellulose I by CP/MAS 13C MAS-NMR spectroscopy. Carbohydr Res 312:123–129

    Article  CAS  Google Scholar 

  • Wormald P, Wickholm K, Larsson PT, Iversen T (1996) Conversions between ordered and disordered cellulose: Effects of mechanical treatment followed by cyclic wetting and drying. Cellulose 3:141–152

    Article  CAS  Google Scholar 

  • Yang J, Han C, Duan J, Xu F, Sun R (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interfaces 5:3199–3207

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Wang T, Oehme D, Petridis L, Hong M, Kubicki JD (2018) Structural factors affecting 13C MAS-NMR chemical shifts of cellulose: a computational study. Cellulose 25:23–36

    Article  CAS  Google Scholar 

  • Yao W, Weng Y, Catchmark JM (2020) Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27:5563–5579

    Article  CAS  Google Scholar 

  • Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944

    Article  CAS  Google Scholar 

  • Zhang YP, Chodavarapu VP, Kirk AG, Andrews MP (2012) Nanocrystalline cellulose for covert optical encryption. J Nanophotonics 6:063516

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Debby Sherman (DSimaging, LLC) for obtaining the TEMs of CNCs. Help of Dr. Tomas Larsson and Ms. Jasna Srndovic (Biorefinery & Energy, RISE Bioeconomy, Stockholm, Sweden) in obtaining MAS-NMR data and carrying out the analyses (CrIs and LFDs) is gratefully acknowledged. Ms. Jane O’Dell (FPL) assistance is recognized for help in obtaining some of the TGA data. General help provided by Dr. Robert Moon (FPL) is appreciated. The authors gratefully acknowledge use of X-ray facilities and instrumentation supported by NSF through the University of Wisconsin-Madison Materials Research Science and Engineering Center (DMR-1121288).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Umesh P. Agarwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3,877 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, U.P., Reiner, R.S., Ralph, S.A. et al. Characterization of the supramolecular structures of cellulose nanocrystals of different origins. Cellulose 28, 1369–1385 (2021). https://doi.org/10.1007/s10570-020-03590-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03590-z

Keywords

Navigation