Skip to main content

Advertisement

Log in

Effect of dopant on the conductivity and stability of three different cotton fabrics impregnated with PEDOT:PSS

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This study has investigated the electrical conductivity (sheet resistance) and morphological properties of dental cotton, textile cotton and gauze cotton after drop casting each type with mixtures of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as primary dopant and dimethylsulfoxide as secondary dopant to further enhance conductivity. These cottons were chosen because they are representative of the wide range of cottons available in the marketplace. Results show that the dental cotton with 96.82 wt% PEDOT:PSS had a minimum sheet resistance of 0.0615 Ω/□ by comparison with the gauze and textile cottons which showed sheet resistances of 0.5061 Ω/□ (64.79 wt% PEDOT:PSS) and 1.2159 Ω/□ (37.20 wt% PEDOT:PSS) respectively. Further, all sheet resistances were found to be stable over a period of approximately 1 month. The sheet resistances of the conductive cottons were also investigated as a function of temperature in the range from 30 to 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alamer FA (2017) A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. J Alloys Compd 702:266–273

    Article  Google Scholar 

  • Alamer FA (2018a) Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose 25:2075–2082

    Article  CAS  Google Scholar 

  • Alamer FA (2018b) The effects of temperature and frequency on the conductivity and dielectric properties of cotton fabric impregnated with doped PEDOT:PSS. Cellulose 25(10):6221–6230

    Article  Google Scholar 

  • Alamer FA (2019) Capacitance-resistive PEDOT:PSS cotton fabric satisfied Jonscher’s law with index exceeding one. J Electron Mater 48:261

    Article  Google Scholar 

  • Altinok AS, Üçgül I, Öksüz AU (2014) Production of polyester/polyaniline, cotton/polyaniline composite fabrics an examing electrical characteristic. Tekst Konfeksiyon 24(1):21–25

    Google Scholar 

  • Anand A, Rani N, Saxena P, Bhandari H, Dhawan SK (2015) Development of polyaniline/zinc oxide nanocomposite impregnated fabric as an electrostatic charge dissipative material. Polym Int 64:1096–1103

    Article  CAS  Google Scholar 

  • Atalay O, Atalay A, Gafford J, Walsh C (2017) A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer. Adv Mater Technol 3(1):1700237

    Article  Google Scholar 

  • Bajgar V, Penhaker M, Martinková L, Pavlovic A, Bober P, Trchová M (2016) Cotton fabric coated with conducting polymers and its application in monitoring of carnivorous plant response. Sensors 16:498

    Article  Google Scholar 

  • Bashir T, Fast L, Skrifvars M, Persson NK (2012) Electrical resistance measurement methods and electrical characterization of poly (3,4-ethylenedioxythiophene)-coated conductive fibers. J Appl Polym Sci 124:2954–2961

    Article  CAS  Google Scholar 

  • Cao Y, Kovalev AE, Xiao R, Kim J, Mayer TS, Mallouk T (2008) Electrical transport and chemical sensing properties of individual conducting polymer nanowires. Nano Lett 8(12):4653–4658

    Article  CAS  Google Scholar 

  • Chen HC, Lee KC, Lin JH, Koch M (2007) Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation. Adv Mater Res Switz 184:124–130

    CAS  Google Scholar 

  • Choi CM, Kwon SN, Na SI (2017) Conductive PEDOT:PSS-coated poly-araphenylene terephthalamide thread for highly durable electronic textiles. J Ind Eng Chem 50:155–161

    Article  CAS  Google Scholar 

  • El-Naggar M, Shaarawy S, Hebeish AA (2018) Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract. Carbohyd Polym 181:307–316

    Article  CAS  Google Scholar 

  • Eom J, Jaisutti R, Lee H, Lee W, Heo J, Lee J, Park SK, Kim Y (2017) Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl Mater Inter 9(11):10190–10197

    Article  CAS  Google Scholar 

  • Gong F, Meng C, He J, Don X (2018) Fabrication of highly conductive and multifunctional polyester fabrics by spray-coating with PEDOT:PSS solutions. Prog Org Coat 121:89–96

    Article  CAS  Google Scholar 

  • Hidenori O, Masayoshi I (2003) Spinning and characterization of conducting microfibers. Macromol Rapid Commun 24:261

    Article  Google Scholar 

  • Hiremath RK, Rabinal MK, Mulimani BG (2006) Simple setup to measure electrical properties of polymeric films. Rev Sci Instrum 77:126106

    Article  Google Scholar 

  • Kim JY, Jung JH, Lee DE, Joo J (2002) Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth Met 126(2):311–316

    Article  CAS  Google Scholar 

  • Kirchmeyer S, Reuter K, Simpson J (2007) Poly(3,4-ethylene-dioxythiophene) scientific importance, remarkable properties, and applications. In: Skotheim T, Reynolds J (eds) Handbook of Conducting Polymers, 3rd edn, vol 1. CRC Press, Boca Raton, pp 79–100

  • Meoli D, Plumlee TM (2002) Interactive electronic textile. Text Appar 2:2

    Google Scholar 

  • Nindiyasari F, Griesshaber E, Zimmermann T, Manian AP, Randow C, Zehbe R, Fernandez-Diaz L, Ziegler A, Fleck C, Schmahl WW (2015) Characterization and mechanical properties investigation of the cellulose/gypsum composite. J Compos Mater 50(5):657–672

    Article  Google Scholar 

  • Okuzaki H, Harashina Y, Yan H (2009) Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol. Eur Polym J 45:256

    Article  CAS  Google Scholar 

  • Otley M, Alamer FA, Guo Y, Santana J, Eren E, Li M, Lombardi J, Sotzing G (2017) Phase segregation of PEDOT:PSS on textile to produce materials of > 10 A mm−2 current carrying capacity. Macromol Mater Eng 302:1600348

    Article  Google Scholar 

  • Pomfret SJ, Adams PN, Comfort NP, Monkman AP (2000) Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process. Polymer 41:2265

    Article  CAS  Google Scholar 

  • Ramesh G, Palaniappan S, Basavaiah K (2018) One-step synthesis of PEDOT-PSS-TiO2 by peroxotitanium acid: a highly stable electrode for a supercapacitor. Ionics 24:1475–1485

    Article  CAS  Google Scholar 

  • Roh JS, Chi YS, Nam SW, Kang TJ (2008) Electromagnetic shielding effectiveness of multifunctional metal composite fabrics. Text Res J 78:825–835

    Article  CAS  Google Scholar 

  • Roh JS, Chi YS, Kang TJ (2009) Thermal insulation properties of multifunctional metal composite fabrics. Smart Mater Struct 18:025018

    Article  Google Scholar 

  • Shi H, Liu C, Jiang Q, Xu J (2015) Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv Electron Mater 1:1500017

    Article  Google Scholar 

  • Skrifvars M, Soroudi A (2008) Melt spinning of carbon nanotube modified polypropylene for electrically conducting nanocomposite fibres. Solid State Phenom 151:43–47

    Article  Google Scholar 

  • Wen Y, Xu J (2017) Scientific importance of water-processable PEDOT–PSS and preparation, challenge and new application in sensors of its film electrode: a review. Polym Chem 55(7):1121–1150

    Article  CAS  Google Scholar 

  • Woltornist SJ, Alamer FA, McDannald A, Jain M, Sotzing GA, Adamson DH (2015) Preparation of conductive graphene/graphite infused fabrics using an interface trapping method. Carbon 18:38–42

    Article  Google Scholar 

  • Xia Y, Ouyang J (2011) PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells. J Mater Chem 21:4927

    Article  CAS  Google Scholar 

  • Yadav A, Prasad V, Kathe A (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29:641

    Article  CAS  Google Scholar 

  • Yetisen A, Qu H, Manbachi A, Butt H, Dokmeci M, Hinestroza J, Skorobogatiy M, Khademhosseini A, Yu S (2016) Nanotechnology in textiles. ACS Nano 10:3042–3068

    Article  CAS  Google Scholar 

  • Zandieh M, Montazer M (2019) Novel conductive polyester using PEDOT:PSS, carbon black nanoparticles stabilized with vinyl acrylate copolymer. Synth Met 247:268–275

    Article  CAS  Google Scholar 

  • Zeronian S (2015) Contributions to the chemistry and physics of cotton fibers. AATCC Rev 15(3):36–41

    CAS  Google Scholar 

  • Zhou J, Mulle M, Zhang Y, Xu X, Li E, Han F, Thoroddsen ST, Lubineau G, Mater J (2016) High-ampacity conductive polymer microfibers as fast response wearable heaters and electromechanical actuators. Chem C 4:1238–1249

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahad Alhashmi Alamer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhashmi Alamer, F., Badawi, N.M., Alodhayb, A. et al. Effect of dopant on the conductivity and stability of three different cotton fabrics impregnated with PEDOT:PSS. Cellulose 27, 531–543 (2020). https://doi.org/10.1007/s10570-019-02787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02787-1

Keywords

Navigation