Skip to main content
Log in

Significantly improved flame-retardancy of cellulose acetate nanofiber by Mg-based nano flaky petal

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Flower-shaped hydromagnesite (MgO-P) and magnesium oxide (MgO) micro spheres were synthesized via precipitation-aging method with and without calcination. The disassociated nano flaky petal of around 50 nm (~ 20 nm in thickness) of MgO-P and MgO by sonication were used as flame-retardants for the electrospun cellulose acetate (CA)/MgO-P or CA/MgO nanofiber. SEM, XRD, FTIR, HRTEM were used to characterize all related products. TGA was used to analyze the detailed decomposition procedures of bare, MgO-P, and MgO doped CA nanofiber. Three evaluation methods including broken time after heating, thermography during heating, and combustion observation were adopted to compare the flame-retardancy of composited nanofibers. Doped CA nanofibers showed best flame-retardancy by extending the heat-induced broken time from 0.46 to 12.09 s, which is 26.3 times that of CA nanofiber. The flame of CA/MgO-P and CA/MgO could be self-extinguished once the ignition source was removed. No smoke and size shrinkage could be observed during the combustion of CA/MgO-P or CA/MgO nanofibers. Corresponding flame-retarding mechanism of Mg-based nano flaky petal was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Boer J, De Wester PG, Klamer HJ, Lewis WE, Boon JP (1998) Do flame retardants threaten ocean life? Nature 394(6688):28–29

    Article  PubMed  Google Scholar 

  • Botha A, Strydom CA (2001) Preparation of a magnesium hydroxy carbonate from magnesium hydroxide. Hydrometallurgy 62(3):175–183

    Article  CAS  Google Scholar 

  • Botha A, Strydom CA (2003) DTA and FT-IR analysis of the rehydration of basic magnesium carbonate. J Therm Anal Calorim 71(3):987–996

    Article  CAS  Google Scholar 

  • Cao H, He Z, Yin J, Lu Y, Wu S, Wu X, Li B (2010) Mg(OH)2 complex nanostructures with superhydrophobicity and flame retardant effects. J Phys Chem C 114(41):17362–17368

    Article  CAS  Google Scholar 

  • Demir MM, Yilgor I, Yilgor E, Erman B (2002) Electrospinning of polyurethane fibers. Polymer 43(11):3303–3309

    Article  CAS  Google Scholar 

  • Duan G, Yang X, Jian C, Huang G, Lu L, Xin W (2007) The catalytic effect of nanosized MgO on the decomposition of ammonium perchlorate. Powder Technol 172(1):27–29

    Article  CAS  Google Scholar 

  • Fu RW, Xu ZS (2016) Research on the effects of charring on the polymer combustion process. Proc Eng 135:335–341

    Google Scholar 

  • Gaan S, Mauclaire L, Rupper P, Salimova V, Tran TT, Heuberger M (2011) Thermal degradation of cellulose acetate in presence of bis-phosphoramidates. J Anal Appl Pyrolysis 90(1):33–41

    Article  CAS  Google Scholar 

  • Hua G, Zhang X, Liu Y, Dong W, Wang Q, Gao J, Song Z, Lai J, Qiao J (2007) Effect of dispersion of nano-magnesium hydroxide on the flammability of flame retardant ternary composites. Compos Sci Technol 67(6):974–980

    Article  CAS  Google Scholar 

  • Huang G, Gao J, Li Y, Liang H, Xu W (2010) Functionalizing nano-montmorillonites by modified with intumescent flame retardant: Preparation and application in polyurethane. Polym Degrad Stab 95(2):245–253

    Article  CAS  Google Scholar 

  • Juan C, Zhi-Liang H, Chang-Lian C, Wen-Zhao LI, Wei-Rong XU (2018) Preparation and growth mechanism of plate-like basic magnesium carbonate by template-mediated/homogeneous precipitation method. J Cent South Univ (Engl Ed) 25:729–735

    Article  CAS  Google Scholar 

  • Kim S (2010) Flame retardancy and smoke suppression of magnesium hydroxide filled polyethylene. J Polym Sci Part B Polym Phys 41(9):936–944

    Article  CAS  Google Scholar 

  • Li X, Zhang K, Shi R, Ma X, Tan L, Ji Q, Xia Y (2017) Enhanced flame-retardant properties of cellulose fibers by incorporation of acid-resistant magnesium-oxide microcapsules. Carbohydr Polym 176:246

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B Polym Phys 40(18):2119–2129

    Article  CAS  Google Scholar 

  • Liu CJ, Wu TW, Hsu LS, Su CJ, Wang CC, Shieu FS (2004) Transport properties of spiral carbon nanofiber mats containing Pd metal clusters using Pd2(dba)3 as catalyst. Carbon 42(12):2635–2640

    Article  CAS  Google Scholar 

  • Liu W, Thomopoulos S, Xia Y (2012) Nanofibers in regenerative medicine: electrospun nanofibers for regenerative medicine. Adv Healthc Mater 1(1):2

    Article  Google Scholar 

  • Mackay AM (1952) Flexicrystallography: curved surfaces in chemcial structures. Curr Soc B237:27

    Google Scholar 

  • Maria da Conceição CL, Alencar DE, Ana EV, Mazzeto SE, de Soares AS (2003) The effect of additives on the thermal degradation of cellulose acetate. Polym Degrad Stab 80(1):149–155

    Article  CAS  Google Scholar 

  • Murphy D, Pinho MND (1995) An ATR-FTIR study of water in cellulose acetate membranes prepared by phase inversion. J Membr Sci 106(3):245–257

    Article  CAS  Google Scholar 

  • Pascariu P, Airinei A, Olaru N, Petrila I, Nica V, Sacarescu L, Tudorache F (2016) Microstructure, electrical and humidity sensor properties of electrospun NiO–SnO2 nanofibers. Sens Actuators B 222:1024–1031

    Article  CAS  Google Scholar 

  • Rodolfo A, Mei L (2010) Poly(vinyl chloride)/metallic oxides/organically modified montmorillonite nanocomposites: fire and smoke behavior. J Appl Polym Sci 116(2):946–958

    CAS  Google Scholar 

  • Sundarrajan S, Tan KL, Lim SH, Ramakrishna S (2014) Electrospun nanofibers for air filtration applications. Proc Eng 75:159–163

    Article  CAS  Google Scholar 

  • Wang S, Yuan H, Zong R, Yong T, Chen Z, Fan W (2004) Preparation and characterization of flame retardant ABS/montmorillonite nanocomposite. Appl Clay Sci 25(1):49–55

    Article  CAS  Google Scholar 

  • Ying LL (2001) Flame-retardant epoxy resins from novel phosphorus-containing novolac. Polymer 42(8):3445–3454

    Article  Google Scholar 

  • Yong T, Yuan H, Wang S, Zhou G, Chen Z, Fan W (2010) Intumescent flame retardant-montmorillonite synergism in polypropylene-layered silicate nanocomposites. Polym Int 52(8):1396–1400

    Google Scholar 

  • Zhang Z, Zheng Y, Zhang J, Zhang Q, Chen J, Liu Z, Liang X (2007) Synthesis and shape evolution of monodisperse basic magnesium carbonate microspheres. Cryst Growth Des 7(2):337–342

    Article  CAS  Google Scholar 

  • Zhang L, Liu J, Li M (2008) Effect of different pyrogenation condition on crystal morphology of basic magnesium carbonate. J Chin Ceram Soc 36(9):1310–1314

    CAS  Google Scholar 

  • Zheng Y, Song J, Cheng B, Fang X, Yuan Y (2015) Preparation and flame retardancy of 3-(hydroxyphenylphosphinyl)-propanoic acid esters of cellulose and their fibers. Cellulose 22(1):229–244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 51773158); and the Key Laboratory of Textile Fiber&Product (Wuhan Textile University) (Grant FZXW2017013), Ministry of Education, for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weilin Xu or Bo Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Li, K., Yang, H. et al. Significantly improved flame-retardancy of cellulose acetate nanofiber by Mg-based nano flaky petal. Cellulose 26, 5211–5226 (2019). https://doi.org/10.1007/s10570-019-02451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02451-8

Keywords

Navigation