Skip to main content
Log in

Cellulose nanofibers/silk fibroin nanohybrid sponges with highly ordered and multi-scale hierarchical honeycomb structure

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Highly ordered cellulose nanofibers/silk fibroin nanohybrid (CSN) honeycomb materials with multi-scale hierarchical architectures are successfully prepared from CSN hydrogel precursors using unidirectional freeze-drying technique. Cellulose nanofibers have an outstanding highly ordered honeycomb structure-directing function in composite hydrogel. However, silk fibroin does not have such function. Therefore, the properties of the CSN sponges can be effectively adjusted by simple changing the ratio of cellulose nanofibers to silk fibroin. When the content of silk fibroin reaches 50%, the CSN-50 sponge exhibits a nearly perfect highly ordered honeycomb structure with multi-scale hierarchical architectures. And the Brunauer–Emmett–Teller specific surface area is about 120 m2 g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84(3):975–983

    Article  CAS  Google Scholar 

  • Chen J, Zhuang A, Shao H, Hu X, Zhang Y (2017) Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration. J Mater Chem B 5(20):3640–3650

    Article  CAS  Google Scholar 

  • Cote F, Russell BP, Deshpande VS, Fleck NA (2009) The through-thickness compressive strength of a composite sandwich panel with a hierarchical square honeycomb sandwich core. J Appl Mech T ASME. https://doi.org/10.1115/1.3086436

    Article  Google Scholar 

  • Deville S (2008) Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater 10(3):155–169

    Article  CAS  Google Scholar 

  • Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311(5760):515–518

    Article  CAS  Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334

    Article  CAS  Google Scholar 

  • Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84(1):579–583

    Article  CAS  Google Scholar 

  • Gao K, Shao Z, Li J, Wang X, Peng X, Wang W, Wang F (2013a) Cellulose nanofiber–graphene all solid-state flexible supercapacitors. J Mater Chem A 1(1):63–67

    Article  CAS  Google Scholar 

  • Gao K, Shao Z, Wang X, Zhang Y, Wang W, Wang F (2013b) Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. RSC Adv 3(35):15058–15064

    Article  CAS  Google Scholar 

  • Habibi MK, Lu Y (2014) Crack propagation in Bamboo’s hierarchical cellular structure. Sci Rep. https://doi.org/10.1038/srep05598

    Article  PubMed  PubMed Central  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  Google Scholar 

  • Kim KN, Chun J, Chae SA, Ahn CW, Kim IW, Kim S-W, Wang ZL, Baik JM (2015) Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles. Nano Energy 14:87–94

    Article  CAS  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15(3):425–433

    Article  CAS  Google Scholar 

  • Lee JM, Kim JH, Lee OJ, Park CH (2013) The fixation effect of a silk fibroin–bacterial cellulose composite plate in segmental defects of the zygomatic arch an experimental study. JAMA Otolaryngol 139(6):629–635

    Google Scholar 

  • Li X-G, Wu LY, Huang MR, Shao H-L, Hu X-C (2008) Conformational transition and liquid crystalline state of regenerated silk fibroin in water. Biopolymers 89(6):497–505

    Article  CAS  Google Scholar 

  • Li WL, Lu K, Walz JY (2012) Freeze casting of porous materials: review of critical factors in microstructure evolution. Int Mater Rev 57(1):37–60

    Article  CAS  Google Scholar 

  • Lin N, Cao L, Huang Q, Wang C, Wang Y, Zhou J, Liu X-Y (2016) Functionalization of silk fibroin materials at mesoscale. Adv Funct Mater 26(48):8885–8902

    Article  CAS  Google Scholar 

  • Matsubara EY, Lala SM, Rosolen JM (2010) Lithium storage into carbonaceous materials obtained from sugarcane bagasse. J Braz Chem Soc 21(10):1877–1884

    Article  CAS  Google Scholar 

  • Montanari S, Rountani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38(5):1665–1671

    Article  CAS  Google Scholar 

  • Niu QY, Guo YQ, Gao KZ, Shao ZQ (2016) Polypyrrole/cellulose nanofiber aerogel as a supercapacitor electrode material. RSC Adv 6(110):109143–109149

    Article  CAS  Google Scholar 

  • Ochi A, Hossain KS, Magoshi J, Nemoto N (2002) Rheology and dynamic light scattering of silk fibroin solution extracted from the middle division of Bombyx mori silkworm. Biomacromol 3(6):1187–1196

    Article  CAS  Google Scholar 

  • Okita Y, Saito T, Isogai A (2009) TEMPO-mediated oxidation of softwood thermomechanical pulp. Holzforschung 63(5):529–535

    Article  CAS  Google Scholar 

  • Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromol 11(6):1696–1700

    Article  CAS  Google Scholar 

  • Oliveira Barud HG, Barud HDS, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos DM, de Oliveira Almeida Petersen AL, Celes F, Borges VM, de Oliveira CI, de Oliveira PF, Furtado RA, Tavares DC, Ribeiro SJL (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51

    Article  CAS  Google Scholar 

  • Pan Z-Z, Nishihara H, Iwamura S, Sekiguchi T, Sato A, Isogai A, Kang F, Kyotani T, Yang Q-H (2016) Cellulose nanofiber as a distinct structure-directing agent for xylem-like microhoneycomb monoliths by unidirectional freeze-drying. ACS Nano 10(12):10689–10697

    Article  CAS  Google Scholar 

  • Qin DC, Zhang F, Dong SY, Zhao YZ, Xu GY, Zhang XG (2016) Analogous graphite carbon sheets derived from corn stalks as high performance sodium-ion battery anodes. RSC Adv 6(108):106218–106224

    Article  CAS  Google Scholar 

  • Qiu L, Liu JZ, Chang SLY, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun. https://doi.org/10.1038/ncomms2251

    Article  PubMed  PubMed Central  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7(6):1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8(8):2485–2491

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Isogai A (2010) Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: effect of the oxidation conditions on carboxylate content and degree of polymerization. J Wood Sci 56(3):227–232

    Article  CAS  Google Scholar 

  • Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19):8804–8809

    Article  CAS  Google Scholar 

  • Schoof H, Apel J, Heschel I, Rau G (2001) Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res 58(4):352–357

    Article  CAS  Google Scholar 

  • Si Y, Wang X, Yan C, Yang L, Yu J, Ding B (2016) Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv Mater 28(43):9512–9518

    Article  CAS  Google Scholar 

  • Song L, Li L, Gao X, Zhao J, Lu T, Liu Z (2015) A facile synthesis of a uniform constitution of three-dimensionally ordered macroporous TiO2-carbon nanocomposites with hierarchical pores for lithium ion batteries. J Mater Chem A 3(13):6862–6872

    Article  CAS  Google Scholar 

  • Taylor CM, Smith CW, Miller W, Evans KE (2011) The effects of hierarchy on the in-plane elastic properties of honeycombs. Int J Solids Struct 48(9):1330–1339

    Article  Google Scholar 

  • Terry AE, Knight DP, Porter D, Vollrath F (2004) PH induced changes in the rheology of silk fibroin solution from the middle division of Bombyx mori silkworm. Biomacromol 5(3):768–772

    Article  CAS  Google Scholar 

  • Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergstrom L (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10(3):277–283

    Article  CAS  Google Scholar 

  • Yun YS, Cho SY, Shim J, Kim BH, Chang S-J, Baek SJ, Huh YS, Tak Y, Park YW, Park S, Jin H-J (2013) Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater 25(14):1993–1998

    Article  CAS  Google Scholar 

  • Zhang F, Lu Q, Ming J, Dou H, Liu Z, Zuo B, Qin M, Li F, Kaplan DL, Zhang X (2014) Silk dissolution and regeneration at the nanofibril scale. J Mater Chem B 2(24):3879–3885

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was kindly supplied by grants from National Natural Science Foundation of China (Nos. 21501154, 21601162, and 21471135), Important Research Project at the University of Henan Province (16A430031), the Project of Henan Province Science and Technology Department (152102210352), Doctoral Research Foundation of Zhengzhou University of Light Industry (2014BSJJ059 and 2014BSJJ060), and Foundation of Zhengzhou University of Light Industry (2015XJJZ030 and 2015XJJY004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingyuan Niu or Lizhen Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4017 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, K., Guo, Y., Niu, Q. et al. Cellulose nanofibers/silk fibroin nanohybrid sponges with highly ordered and multi-scale hierarchical honeycomb structure. Cellulose 25, 429–437 (2018). https://doi.org/10.1007/s10570-017-1545-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1545-x

Keywords

Navigation