Skip to main content
Log in

Investigation of the multilayered structure and microfibril angle of different types of bamboo cell walls at the micro/nano level using a LC-PolScope imaging system

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bamboo has excellent mechanical properties compared to wood and other plant materials, due to its multilayered structure and polytropic microfibril angle (MFA). The micro/nano scale structure and MFA of fibers, parenchyma cells, and vessels from 4-year-old Moso bamboo (Phyllostachys Heterocycla Var. Pubescens) were investigated by a novel LC-PolScope imaging system and transmission electron microscopy. At the nanoscale, the numbers of layers and accurate MFA for each layer especially thin layers could be obtained quickly using this novel LC-PolScope imaging system. Based on the differences of structure and shape, fibers and parenchyma cells in the vascular bundle were divided into FI, II, III and PI, II cells, respectively. The former class of FI, II, III included 2, 6–8, and 6–8 secondary cell wall layers in turn. The latter class exhibited 9 secondary cell wall layers, with a maximum of 16 layers. To our knowledge, this is the first report of accurate MFA measurement based on the differences of structure and shape for every layer of single fibers, parenchyma cells and vessels in the vascular bundle. For all three cell types, the results also showed that the MFA of sub-layers in secondary walls followed the same changing law: alternating smaller and then bigger MFA. This structural form may be the consequence of natural selection and optimization indicating the long-term mechanical adaptation of bamboo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe H, Funada R, Ohtani J, Fukazawa K (1997) Changes in the arrangement of cellulose microfibrils associated with the cessation of cell expansion in tracheids. Trees-Struct Funct 11:328–332. doi:10.1007/s004680050092

    Article  Google Scholar 

  • Abraham Y, Elbaum R (2013) Quantification of microfibril angle in secondary cell walls at subcellular resolution by means of polarized light microscopy. New Phytol 197:1012–1019. doi:10.1111/nph.12070

    Article  CAS  Google Scholar 

  • Ahvenainen P, Dixon PG, Kallonen A, Suhonen H, Gibson LJ, Svedström K (2017) Spatially-localized bench-top X-ray scattering reveals tissue-specific microfibril orientation in Moso bamboo. Plant Methods 13(1):5. doi:10.1186/s13007-016-0155-1

    Article  Google Scholar 

  • An X (2016) Microfibril orientations and ultrastructure of fibers wall from Moso bamboo. Ph.D. dissertation, Chinese Academy of Forestry, Beijing, China

  • Burgert I, Keckes J, Frühmann K, Fratzl P, Tschegg SE (2002) A comparison of two techniques for wood fibre isolation-evaluation by tensile tests on single fibres with different microfibril angle. Plant Biol 4(01):9–12. doi:10.1055/s-2002-20430

    Article  CAS  Google Scholar 

  • Cave I (1966) Theory of X-ray measurement of microfibril angle in wood. For Prod J 16:37–43

    Google Scholar 

  • Cave I (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2(4):268–278

    Article  Google Scholar 

  • Cha MY, Lee KH, Kim YS (2014) Micromorphological and chemical aspects of archaeological bamboos under long-term waterlogged condition. Int Biodeterior Biodegradation 86:115–121. doi:10.1016/j.ibiod.2013.08.008

    Article  CAS  Google Scholar 

  • Chen H (2014) Study on the structural characteristics of bamboo cell wall. Ph.D. dissertation, Chinese Academy of Forestry, Beijing, China

  • Crow E, Murphy R (2000) Microfibril orientation in differentiating and maturing fibre and parenchyma cell walls in culms of bamboo (Phyllostachys viridi-glaucescens (Carr.) Riv. & Riv.). Bot J Linn Soc 134:339–359. doi:10.1111/j.1095-8339.2000.tb02357.x

    Google Scholar 

  • Dixon PG, Gibson LJ (2014) The structure and mechanics of Moso bamboo material. J R Soc Interface 11:20140321. doi:10.1098/rsif.2014.0321

    Article  Google Scholar 

  • Dixon PG, Ahvenainen P, Aijazi AN, Chen SH, Lin S, Augusciak PK, Gibson LJ (2015) Comparison of the structure and flexural properties of Moso, Guadua and Tre Gai bamboo. Constr Build Mater 90:11–17. doi:10.1016/j.conbuildmat.2015.04.042

    Article  Google Scholar 

  • Donaldson L, Hague J, Snell R (2001) Lignin distribution in coppice poplar, linseed and wheat straw. Holzforschung 55:379–385. doi:10.1515/HF.2001.063

    Article  CAS  Google Scholar 

  • Eder M, Lütz-Meindl U, Weiss IM (2010) Non-invasive LC-PolScope imaging of biominerals and cell wall anisotropy changes. Protoplasma 246:49–64. doi:10.1007/s00709-010-0124-x

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896. doi:10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20(1):583–588. doi:10.1007/s10570-012-9833-y

    Article  CAS  Google Scholar 

  • Gan X, Ding Y (2006) Investigation on the variation of fiber wall in Phyllostachys edulis culms. For Res 19:457

    Google Scholar 

  • Gritsch CS, Murphy RJ (2005) Ultrastructure of fibre and parenchyma cell walls during early stages of culm development in Dendrocalamus asper. Ann Bot-Lond 95:619–629. doi:10.1093/aob/mci068

    Article  Google Scholar 

  • Gritsch CS, Kleist G, Murphy RJ (2004) Developmental changes in cell wall structure of phloem fibres of the bamboo Dendrocalamus asper. Ann Bot-Lond 94:497–505. doi:10.1093/aob/mch169

    Article  Google Scholar 

  • Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A, Sampathkumar A, Baskin TI, Persson S, Somerville CR (2010) Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci USA 107(29):12866–12871. doi:10.1073/pnas.1007092107

    Article  Google Scholar 

  • He X-Q, Suzuki K, Kitamura S, Lin J-X, Cui K-M, Itoh T (2002) Toward understanding the different function of two types of parenchyma cells in bamboo culms. Plant Cell Physiol 43:186–195. doi:10.1093/pcp/pcf027

    Article  CAS  Google Scholar 

  • Huang Y, Fei B, Wei P, Zhao C (2016) Mechanical properties of bamboo fiber cell walls during the culm development by nanoindentation. Ind Crop Prod 92:102–108. doi:10.1016/j.indcrop.2016.07.037

    Article  CAS  Google Scholar 

  • Iyer K, Neelakantan P, Radhakrishnan T (1968) Birefringence of native cellulosic fibers. I. Untreated cotton and ramie. J Polym Sci Phys 6:1747–1758. doi:10.1002/pol.1968.160061005

    CAS  Google Scholar 

  • Jiang Z (2007) Bamboo and Rattan in the World. China Forestry Publish House, Beijing

    Google Scholar 

  • Jiang J, Yang Z, Zhu L, Shi L, Yan L (2008) Structure and property of bamboo fiber. J Beijing For Univ 30:128–132

    CAS  Google Scholar 

  • Khalil HA, Bhat I, Jawaid M, Zaidon A, Hermawan D, Hadi Y (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368. doi:10.1016/j.matdes.2012.06.015

    Article  Google Scholar 

  • Kim JS, Lee KH, Cho CH, Koch G, Kim YS (2008) Micromorphological characteristics and lignin distribution in bamboo (Phyllostachys pubescens) degraded by the white rot fungus Lentinus edodes. Holzforschung 62:481–487. doi:10.1515/HF.2008.080

    CAS  Google Scholar 

  • Kinumoto T, Matsumura T, Yamaguchi K, Matsuoka M, Tsumura T, Toyoda M (2015) Material Processing of Bamboo for Use as a Gas Diffusion Layer in Proton Exchange Membrane Fuel Cells. ACS Sustain Chem Eng 3:1374–1380. doi:10.1021/acssuschemeng.5b00115

    Article  CAS  Google Scholar 

  • Kishi K, Harada H, Saiki H (1979) An electron microscopic study of the layered structure of the secondary wall in vessels. J Jap Wood Res Soc 25:521–527

    Google Scholar 

  • Liese W (1998) The anatomy of bamboo culms, vol 18. Brill Academic Publishers, Leiden

    Google Scholar 

  • Liese W (2005) Preservation of a bamboo culm in relation to its structure. World Bamboo Rattan 3:17–21

    Google Scholar 

  • Liu B (2008) Formation of cell wall in development culms of Phyllostachys pubescens. Ph.D. dissertation, Chinese Academy of Forestry, Beijing, China

  • Liu D, Song J, Anderson DP, Chang PR, Hua Y (2012) Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19:1449–1480. doi:10.1007/s10570-012-9741-1

    Article  CAS  Google Scholar 

  • Lybeer B (2006) Age-related anatomical aspects of some temperate and tropical bamboo culms (Poaceae: Bambusoideae). Ph.D. dissertation, Ghent University

  • Lybeer B, Koch G (2005) A topocuemical and semiquantitative study of the lignification during ageing of bamboo culms (Phyllostachys Viridiglaucescens). IAWA J 26:99–110. doi:10.1163/22941932-90001605

    Article  Google Scholar 

  • Lybeer B, Koch G, Van Acker J, Goetghebeur P (2006) Lignification and cell wall thickening in nodes of Phyllostachys viridiglaucescens and Phyllostachys nigra. Ann Bot-Lond 97:529–539. doi:10.1093/aob/mcl016

    Article  Google Scholar 

  • Ma L, Ma N (1997) Study on variation in bamboo wood properties of Phyllostachys heterocycla var. pubescens. Sci Silv Sin 33:356–364

    Google Scholar 

  • Mannan S, Zaffar M, Pradhan A, Basu S (2016) Measurement of microfibril angles in bamboo using Mueller matrix imaging. Appl Opt 55:8971–8978. doi:10.1364/AO.55.008971

    Article  Google Scholar 

  • Murphy R, Alvin K (1992) Variation in fibre wall structure in bamboo. IAWA J 13:403–410. doi:10.1163/22941932-90001296

    Article  Google Scholar 

  • Murphy R, Sulaiman O, Alvin K (1997) Ultrastructural aspects of cell wall organization in bamboos. In: Chapman GP (ed) The Bamboos. Linnean Society symposium series. Academic Press Limited, London, pp 305–312

    Google Scholar 

  • Mustafa MT, Wahab R, Sudin M, Sulaiman O, Kamal NAM, Khalid I (2011) Anatomical and microstructures features of tropical bamboo Gigantochloa brang, G. levis, G. scotechinii and G. wrayi. Int J For Soil Eros 1(1):25–35

    Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082. doi:10.1021/ja0257319

    Article  CAS  Google Scholar 

  • Nogata F, Takahashi H (1995) Intelligent functionally graded material: bamboo. Compos Eng 5:743–751. doi:10.1016/0961-9526(95)00037-N

    Article  Google Scholar 

  • Palombini FL, Kindlein W Jr, de Oliveira BF, de Araujo Mariath JE (2016) Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography. Mater Charact 120:357–368. doi:10.1016/j.matchar.2016.09.022

    Article  CAS  Google Scholar 

  • Parameswaran N, Liese W (1976) On the fine structure of bamboo fibres. Wood Sci Technol 10:231–246. doi:10.1007/BF00350830

    CAS  Google Scholar 

  • Preston JM (1933) Relations between the refractive indices and the behaviour of cellulose fibres. Trans Faraday Soc 29:65–71

    Article  CAS  Google Scholar 

  • Preston R, Singh K (1950) The fine structure of bamboo fibres I. Optical properties and X-ray data. J Exp Bot 1(2):214–226

    Article  Google Scholar 

  • Preston R, Singh K (1952) The Fine Structure of Bamboo Fibres II. Refractive indices and wall density. J Exp Bot 3(8):162–169

    Article  Google Scholar 

  • Preston R, Hermans P, Weidinger A (1950) The crystalline-non-crystalline ratio in celluloses of biological interest. J Exp Bot 1(3):344–352

    Article  Google Scholar 

  • Ren D, Wang H, Yu Z, Wang H, Yu Y (2015) Mechanical imaging of bamboo fiber cell walls and their composites by means of peakforce quantitative nanomechanics (PQNM) technique. Holzforschung 69:975–984. doi:10.1515/hf-2014-0237

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractomete. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Sharma R, Varshney V, Chauhan GS, Naithani S, Soni P (2009) Hydroxypropylation of cellulose isolated from bamboo (Dendrocalamus strictus) with respect to hydroxypropoxyl content and rheological behavior of the hydroxypropyl cellulose. J Appl Polym Sci 113:2450–2455. doi:10.1002/app.30205

    Article  CAS  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultra Mol Struct Res 26:31–43

    Article  CAS  Google Scholar 

  • Sun Z, Yang J, Yu C (2007) Bamboo fiber density. Prog Text Sci Technol 1:029

    Google Scholar 

  • Sun M, He H, Zeng N, Du E, Guo Y, Liu S, Ma H (2014) Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed Opt Express 5(12):4223–4234. doi:10.1364/BOE.5.004223

    Article  Google Scholar 

  • Takagi H, Takura R, Ichihara Y, Ochi S, Misawa H, Niki R (2003) The mechanical properties of bamboo fibers prepared by steam-explosion method. J Soc Mater Sci Jpn 52:353–356

    Article  CAS  Google Scholar 

  • Tian G (2015) The main influence factors of bamboo fiber mechanical properties. Ph.D. dissertation, Chinese Academy of Forestry, Beijing, China

  • Toba K, Nakai T, Shirai T, Yamamoto H (2015) Changes in the cellulose crystallinity of moso bamboo cell walls during the growth process by X-ray diffraction techniques. J Wood Sci 61:517–524. doi:10.1007/s10086-015-1490-y

    Article  CAS  Google Scholar 

  • Tono T, Ono K (1962) The layered structure and its morphological transformation by acid treatment. J Japanese Wood Res Soc 8:245–249

    Google Scholar 

  • Wai N, Nanko H, Murakami K (1985) A morphological study on the behavior of bamboo pulp fibers in the beating process. Wood Sci Technol 19:211–222. doi:10.1007/BF00392050

    Article  CAS  Google Scholar 

  • Wang XQ, Li XZ, Ren HQ (2010) Variation of microfibril angle and density in moso bamboo (Phyllostachys pubescens). J Trop For Sci 22(1):88–96

    Google Scholar 

  • Wang X, Ren H, Zhang B, Fei B, Burgert I (2012a) Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance. J R Soc Interface 9:988–996. doi:10.1098/rsif.2011.0462

    Article  Google Scholar 

  • Wang Y, Leppänen K, Andersson S, Serimaa R, Ren H, Fei B (2012b) Studies on the nanostructure of the cell wall of bamboo using X-ray scattering. Wood Sci Technol 46(1–3):317–332. doi:10.1007/s00226-011-0405-3

    Article  CAS  Google Scholar 

  • Wang X, Keplinger T, Gierlinger N, Burgert I (2014) Plant material features responsible for bamboo’s excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels. Ann Bot-Lond 114:1627–1635. doi:10.1093/aob/mcu180

    Article  CAS  Google Scholar 

  • Wang H, Zhang X, Jiang Z, Li W, Yu Y (2015) A comparison study on the preparation of nanocellulose fibrils from fibers and parenchymal cells in bamboo (Phyllostachys pubescens). Ind Crop Prod 71:80–88. doi:10.1016/j.indcrop.2015.03.086

    Article  CAS  Google Scholar 

  • Yu Y, Tian G, Wang H, Fei B, Wang G (2011) Mechanical characterization of single bamboo fibers with nanoindentation and microtensile technique. Holzforschung 65:113. doi:10.1515/hf.2011.009

    CAS  Google Scholar 

  • Yu Y, Wang H, Lu F, Tian G, Lin J (2014) Bamboo fibers for composite applications: a mechanical and morphological investigation. J Mater Sci 49:2559–2566. doi:10.1007/s10853-013-7951-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Nos. 31500472 and 31370563).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhui Huang or Chunli Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Huang, Y., Fei, B. et al. Investigation of the multilayered structure and microfibril angle of different types of bamboo cell walls at the micro/nano level using a LC-PolScope imaging system. Cellulose 24, 4611–4625 (2017). https://doi.org/10.1007/s10570-017-1447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1447-y

Keywords

Navigation