Skip to main content
Log in

Carbon partitioning in the boll plays an important role in fiber quality in colored cotton

Cellulose Aims and scope Submit manuscript

Abstract

Assays were conducted to examine the photosynthesis of stem leaves and subtending leaves of cotton bolls, the fiber-quality parameters length, strength and micronaire, and dry matter accumulation in fibers, seeds and burs during fiber development in the colored cotton cultivars ZX-1 and G-7 and the white cotton cultivar LMY28. The results showed that fiber-quality parameters were all lower in ZX-1 and G-7 than in LMY28. The final dry weight of fiber was significantly lower in ZX-1 and G-7 than in LMY28, whereas the final dry weights of the seed and bur were both significantly higher. The seed harvest index was significantly lower in ZX-1 and G-7 than in LMY28 after 35 days post anthesis, when the seed harvest index decreased in colored cotton and increased in white cotton. These results indicated that the differential carbon partitioning in the boll was a key factor that resulted in poor fiber-quality parameters length and strength in colored cotton. Further, the time required for rapid dry matter accumulation (T) and the maximum speed of fiber thickening (Vm) were both significantly lower in ZX-1 and G-7 than in LMY28 for fiber strength, and the maximum speed of dry matter accumulation (Vm) differed significantly for the dry matter accumulation in the fiber, seed and bur between colored cotton and white cotton. These results show that Vm is a key factor for dry matter accumulation in the fiber, seed and bur, as well as for fiber strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abidi N, Hequet E, Cabrales L (2010) Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers. Cellulose 17(1):153–160. doi:10.1007/s10570-009-9364-3

    Article  CAS  Google Scholar 

  • Aranjuelo I, Sanz-Sáez Á, Jauregui I, Irigoyen JJ, Araus JL, Sánchez-Díaz M, Erice G (2013) Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. J Exp Bot. doi:10.1093/jxb/ert081

    Google Scholar 

  • Ashley DA (1972) C-labelled photosynthate translocation and utilization in cotton plants. Crop Sci 12(1):69–74. doi:10.2135/cropsci1972.0011183X001200010023x

    Article  CAS  Google Scholar 

  • Bradow JM, Davidonis GH (2000) Quantitation of fiber quality and the cotton production-processing interface: a physiologist’s perspective. J Cotton Sci 4:34–64

    Google Scholar 

  • Braun DM, Wang L, Ruan YL (2014) Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J Exp Bot 65(7):1713–1735. doi:10.1093/jxb/ert416

    Article  CAS  Google Scholar 

  • Djaman K, Irmak S, Rathje WR, Martin DL, Eisenhauer DE (2013) Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation. Trans ASABE 56(2):373–393. doi:10.13031/2013.42676

    Article  Google Scholar 

  • Du X, Liu G (2000) Natural color cotton cultivar Zongxu-1 and its developing strategy. China Cotton 27(7):10–12

    Google Scholar 

  • Dutt Y, Wang XD, Zhu YG, Li YY (2004) Breeding for high yield and fibre quality in coloured cotton. Plant Breed 123:145–151

    Article  Google Scholar 

  • Gipson JR, Ray LL (1969) Fiber elongation rates in five varieties of cotton (Gossypium hirsutum L.) as influenced by night temperature. Crop Sci 9(3):339–341. doi:10.2135/cropsci1969.0011183X000900030027x

    Article  Google Scholar 

  • Gokani SJ, Thaker VS (2000) Physiological and biochemical changes associated with cotton fiber development. VIII. Wall components. Acta Physiol Plant 22(4):403–408. doi:10.1007/s11738-000-0080-8

    Article  CAS  Google Scholar 

  • Guo Y, Guo X, Wang F, Wei Z, Wang L, Yuan Y, Zeng W, Zhang G, Zhang T, Song X (2014) Molecular tagging and marker-assisted selection of fiber quality traits using chromosome segment introgression lines (CSILs) in cotton. Euphytica 200(2):239–250. doi:10.1007/s10681-014-1150-0

    Article  Google Scholar 

  • Haigler CH, Ivanova-Datcheva M, Hogan PS, Salnikov VV, Hwang S, Martin K, Delmer DP (2001) Carbon partitioning to cellulose synthesis. Plant Mol Biol 47(1–2):29–51. doi:10.1023/a:1010615027986

    Article  CAS  Google Scholar 

  • Haigler CH, Zhang DS, Wilkerson CG (2005) Biotechnological improvement of cotton fibre maturity. Physiol Plantarum 124(3):285–294. doi:10.1111/j.1399-3054.2005.00480.x

    Article  CAS  Google Scholar 

  • Harsant J, Pavlovic L, Chiu G, Sultmanis S, Sage TL (2013) High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. J Exp Bot. doi:10.1093/jxb/ert142

    Google Scholar 

  • Hua SJ, Wang XD, Yuan SN, Shao MY, Zhao XQ, Zhu SJ, Jiang LX (2007) Characterization of pigmentation and cellulose synthesis in colored cotton fibers. Crop Sci 47(4):1540–1546. doi:10.2135/cropsci2006.12.0835

    Article  CAS  Google Scholar 

  • Hua SJ, Yuan SN, Shamsi IH, Zhao XQ, Zhang XQ, Liu YX, Wen GJ, Wang XD, Zhang HP (2009) A comparison of three isolines of cotton differing in fiber color for yield, quality, and photosynthesis. Crop Sci 49(3):983–989. doi:10.2135/cropsci2008.06.0371

    Article  CAS  Google Scholar 

  • Iersel MWV, Harris WM, Oosterhuis DM (1995) Phloem in developing cotton fruits: 6(5)carboxyfluorescein as a tracer for functional phloem. J Exp Bot 46(284):321–328. doi:10.2307/23693969

    Google Scholar 

  • Jaquet JP, Buchala AJ, Meier H (1982) Changes in the non-structural carbohydrate content of cotton (Gossypium spp.) fibres at different stages of development. Planta 156(5):481–486. doi:10.1007/BF00393321

    Article  CAS  Google Scholar 

  • Krishnamurthy L, Kashiwagi J, Tobita S, Ito O, Upadhyaya HD, Gowda CL, Gaur PM, Sheshshayee MS, Singh S, Vadez V (2013) Variation in carbon isotope discrimination and its relationship with harvest index in the reference collection of chickpea germplasm. Funct Plant Biol 40(12):1350–1361. doi:10.1071/FP13088

    Article  CAS  Google Scholar 

  • Kronberg K, Vogel F, Rutten T, Hajirezaei M-R, Sonnewald U, Hofius D (2007) The silver lining of a viral agent: increasing seed yield and harvest index in arabidopsis by ectopic expression of the potato leaf roll virus movement protein. Plant Physiol 145(3):905–918. doi:10.1104/pp.107.102806

    Article  CAS  Google Scholar 

  • Leffler HR (1976) Development of cotton fruit I. Accumulation and distribution of dry matter. Agron J 68(6):855–857. doi:10.2134/agronj1976.00021962006800060005x

    Article  Google Scholar 

  • Li X, Yan W, Agrama H, Jia L, Jackson A, Moldenhauer K, Yeater K, McClung A, Wu D (2012) Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.). PLoS ONE 7(1):e29350. doi:10.1371/journal.pone.0029350

    Article  CAS  Google Scholar 

  • Liu XY, Yu WD (2006) Determination of cotton fiber fineness, maturity and micronaire value. Chin Fiber Insp 7:44–47

    Google Scholar 

  • Liu JR, Meng YL, Chen BL, Zhou ZG, Ma YN, Lv FJ, Chen J, Wang YH (2015) Photosynthetic characteristics of the subtending leaf and the relationships with lint yield and fiber quality in the late-planted cotton. Acta Physiol Plant 37(4):1–11. doi:10.1007/s11738-015-1824-9

    Google Scholar 

  • Pettigrew WT (1995) Source-to-sink manipulation effects on cotton fiber quality. Agron J 87(5):947–952. doi:10.2134/agronj1995.00021962008700050029x

    Article  Google Scholar 

  • Pettigrew WT (2004) Cotton genotypic variation in the photosynthetic response to irradiance. Photosynthetica 42(2):567–571. doi:10.1007/S11099-005-0014-1

    Article  CAS  Google Scholar 

  • Ruan YL (2005) Recent advances in understanding cotton fibre and seed development. Seed Sci Res 15(04):269–280. doi:10.1079/SSR2005217

    Article  CAS  Google Scholar 

  • Ruan YL (2013) Boosting seed development as a new strategy to increase cotton fiber yield and quality. J Integr Plant Biol 55(7):572–575. doi:10.1111/jipb.12074

    Article  CAS  Google Scholar 

  • Ruan YL (2014) Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol 65(1):33–67. doi:10.1146/annurev-arplant-050213-040251

    Article  CAS  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15(4):952–964. doi:10.1105/tpc.010108

    Article  CAS  Google Scholar 

  • Sanford NE (2015) Sugar signaling and metabolism regulate carbon partitioning in developing cotton fiber. Experimental paper. Texas Tech Universit, Nicholas Sanford

    Google Scholar 

  • Schubert AM, Benedict CR, Berlin JD, Kohel RJ (1973) Cotton fiber development-kinetics of cell elongation and secondary wall thickening. Crop Sci 13(6):704–709. doi:10.2135/cropsci1973.0011183X001300060035x

    Article  Google Scholar 

  • Sinclair TR (1998) Historical changes in harvest index and crop nitrogen accumulation. Crop Sci 38(3):638–643. doi:10.2135/cropsci1998.0011183X003800030002x

    Article  Google Scholar 

  • Sun HC, Feng LX, Xie ZX, Li CD, Li JC (2007) Physiological characteristics of boll-leaf system and boll weight space distributing of cotton under different nitrogen levels. Sci Agric Sin 40:1638–1645

    CAS  Google Scholar 

  • Tang FY, Xiao WJ (2013) Dry matter accumulation and partitining in various fractions of cotton bolls. Exp Agric 49(04):543–555. doi:10.1017/S001447971300029X

    Article  Google Scholar 

  • Tang FY, Wang T, Zhu JM (2014) Carbohydrate profiles during cotton (Gossypium hirsutum L.) boll development and their relationships to boll characters. Field Crop Res 164:98–106. doi:10.1016/j.fcr.2014.06.002

    Article  Google Scholar 

  • Tian JS, Hu XB, Gou L, Luo HH, Zhang YL, Zhang WF (2014) Growing degree days is the dominant factor associated with cellulose deposition in cotton fiber. Cellulose 21(1):813–822. doi:10.1007/s10570-013-0152-8

    Article  CAS  Google Scholar 

  • Unkovich M, Baldock J, Forbes M (2010) Variability in harvest index of grain crops and potential significance for carbon accounting: examples from Australian agriculture. Adv Agron 105:173–219. doi:10.1016/S0065-2113

    Article  Google Scholar 

  • ur Rehman H, Nawaz Q, Basra SMA, Afzal I, Yasmeen A (2014) Seed priming influence on early crop growth, phenological development and yield performance of linola (Linum usitatissimum L.). J Integr Agric 13(5):990–996. doi:10.1016/S2095-3119(13)60521-3

    Article  Google Scholar 

  • Wang Y, Shu H, Chen B, McGiffen ME Jr, Zhang W, Xu N, Zhou Z (2009) The rate of cellulose increase is highly related to cotton fibre strength and is significantly determined by its genetic background and boll period temperature. Plant Growth Regul 57(3):203–209. doi:10.1007/s10725-008-9337-9

    Article  CAS  Google Scholar 

  • Wullschleger SD, Oosterhuis DM (1990) Photosynthetic carbon production and use by developing cotton leaves and bolls. Crop Sci 30(6):1259–1264. doi:10.2135/cropsci1990.0011183X003000060021x

    Article  CAS  Google Scholar 

  • Xu L, Li G, He X, Yang D (2003) Boll developmental characteristic of “Kemian 2” with high quality. Jiangsu J Agric Sci 19(4):218–222

    Google Scholar 

  • Yuan SN, Hua SJ, Malik W, Bibi N, Wang XD (2012) Physiological and biochemical dissection of fiber development in colored cotton. Euphytica 187(2):215–226. doi:10.1007/s10681-012-0653-9

    Article  CAS  Google Scholar 

  • Zhang B (2005) New green fiber upland cotton cultivar-Longlvmian-2. China Cotton 32(11):22

    Google Scholar 

  • Zhang X, Chen S, Sun H, Pei D, Wang Y (2008) Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. Irrig Sci 27(1):1–10. doi:10.1007/s00271-008-0131-2

    Article  Google Scholar 

  • Zhang X, Xiao J, Luan N, Wang YH, Yang CH, Chen Y, Chen DH (2009) Characteristics of fiber quality in cotton development and its regulation by hormone in two natural colored cotton cultivars. Acta Agron Sin 35:907–913

    Article  CAS  Google Scholar 

  • Zhang ML, Song XL, Sun XZ, Chen EY, Zhao QL, Li ZT (2010) Relationship between super-molecular structure changes and fiber quality in fiber development process of colored cotton cultivars. Acta Agron Sin 36(8):1386–1392

    Article  Google Scholar 

  • Zhang ML, Song XL, Sun XZ, Wang ZL, Zhao QL, Li ZT, Ji H, Xu XL (2011a) Observation of differentiation and pigment deposition process in colored cotton fibers. Acta Agron Sin 37:1280–1288. doi:10.3724/sp.j.1006.2011.01280

    Google Scholar 

  • Zhang ML, Song XL, Sun XZ, Wang ZL, Zhao QL, Li ZT, Ji H, Xu XL (2011b) Patterns of color formation in different fibers during development of colored cotton. Aust J Crop Sci 5:1796–1800

    Google Scholar 

  • Zhang ML, Xl Song, Sun XZ, Wang ZL, Li ZT, Ji H, Xu XL, Li JP (2012) The relationship between cellulose content and the contents of sugars and minerals during fiber development in colored cotton cultivars. Cellulose 19(6):2003–2014. doi:10.1007/s10570-012-9776-3

    Article  CAS  Google Scholar 

  • Zhao W, Meng Y, Li W, Chen B, Xu N, Wang Y, Zhou Z, Oosterhuis DM (2012) A model for cotton (Gossypium hirsutum L.) fiber length and strength formation considering temperature-radiation and N nutrient effects. Ecol Modell 243:112–122. doi:10.1016/j.ecolmodel.2012.06.015

    Article  CAS  Google Scholar 

  • Zhu SW, Gao P, Sun JS, Wang HH, Luo XM, Jiao MY, Wang ZY, Xia GX (2006) Genetic transformation of green-colored cotton. Vitro Cell Dev Biol Plant 42(5):439–444. doi:10.1079/IVP2006777

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the China Postdoctoral Science Foundation (2014M551939), Shandong Province Modern Agro-industry Technology Research System (SDAIT-03), Shandong Province Agricultural Seed Projects (Lu Scientific [2014]96), and Natural Science Foundation of Shandong Province (ZR2013CM005) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenlin Wang or Xuezhen Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Song, X., Ji, H. et al. Carbon partitioning in the boll plays an important role in fiber quality in colored cotton. Cellulose 24, 1087–1097 (2017). https://doi.org/10.1007/s10570-016-1139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1139-z

Keywords

Navigation