Abstract
The response of monocytes and macrophages to functionalized Cladophora nanocellulose (CC) films was evaluated. Carboxyl-CC and hydroxypropyltrimethylammonium-CC [referred to as anionic-CC (a-CC) and cationic-CC (c-CC), respectively] were synthesized by TEMPO-mediated oxidation and epoxypropyltrimethylammonium chloride condensation of unmodified CC (u-CC). The cell response to u-CC, a-CC and c-CC of untreated and phorbol 12-myristate-13 acetate treated THP-1 cells, i.e. monocytes and macrophages, in the presence and absence of lipopolysaccharide (LPS) was studied. u-CC impairs the viability of THP-1 monocytes and macrophages most probably due to the presence of impurities. In the absence of LPS, the functionalized materials behave as inert materials in terms of the inflammatory response of both monocytes and differentiated macrophages. Under pro-inflammatory stimuli the functionalized CC films suppressed the inflammatory response induced by LPS. The a-CC material with its aggregated, aligned fibre structure caused a more pronounced reduction of TNF-α levels compared to the c-CC film that exhibited non-aggregated, randomly oriented fibres. These results push forward the option of using functionalized CC materials in the biomedical field.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Almqvist S, Werthen M, Lyngstadaas SP, Gretzer C, Thomsen P (2012) Amelogenins modulate cytokine expression in LPS-challenged cultured human macrophages. Cytokine 58:274–279. doi:10.1016/j.cyto.2012.02.001
Anderson JM, Jones JA (2007) Phenotypic dichotomies in the foreign body reaction. Biomaterials 28:5114–5120. doi:10.1016/j.biornaterials.2007.07.010
Auwerx J (1991) The human leukemia-cell line, Thp-1—a multifaceted model for the study of monocyte-macrophage differentiation. Experientia 47:22–31. doi:10.1007/Bf02041244
Bota PCS, Collie AMB, Puolakkainen P, Vernon RB, Sage EH, Ratner BD, Stayton PS (2010) Biomaterial topography alters healing in vivo and monocyte/macrophage activation in vitro. J Biomed Mater Res A 95A:649–657. doi:10.1002/Jbm.A.32893
Brodbeck WG, Nakayama Y, Matsuda T, Colton E, Ziats NP, Anderson JM (2002) Biomaterial surface chemistry dictates adherent monocyte/macrophage cytokine expression in vitro. Cytokine 18:311–319. doi:10.1006/cyto.2002.1048
Carlsson DO, Nyström G, Ferraz N, Nyholm L, Mihranyan A, Strømme M (2012) Development of nanocellulose/polypyrrole composites towards blood purification. Proc Eng 44:733–736. doi:10.1098/rsif.2012.0019
Collier TO, Anderson JM (2002) Protein and surface effects on monocyte and macrophage adhesion, maturation, and survival. J Biomed Mater Res 60:487–496. doi:10.1002/Jbm.10043
Diekjurgen D, Astashkina A, Grainger DW, Holt D, Brooks AE (2012) Cultured primary macrophage activation by lipopolysaccharide depends on adsorbed protein composition and substrate surface chemistry. J Biomat Sci Polym E 23:1231–1254. doi:10.1163/092050611x580382
Dinarello CA (1998) Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int Rev Immunol 16:457–499. doi:10.3109/08830189809043005
Efron PA, Moldawer LL (2004) Cytokines and wound healing: the role of cytokine and anticytokine therapy in the repair response. J Burn Care Rehabil 25:149–160. doi:10.1097/01.Bcr.0000111766.97335.34
Ferraz N, Mihranyan A (2014) Is there a future for electrochemically assisted hemodialysis? focus on the application of polypyrrole-nanocellulose composites. Nanomedicine-UK 9:1095–1110. doi:10.2217/Nnm.14.49
Ferraz N, Hong J, Santin M, Karlsson Ott M (2010) Nanoporosity of alumina surfaces induces different patterns of activation in adhering monocytes/macrophages. Int J Biomater 2010:402715. doi:10.1155/2010/402715
Ferraz N et al (2012a) Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification. J R Soc Interface 9:1943–1955. doi:10.1098/rsif.2012.0019
Ferraz N, Strømme M, Fellström B, Pradhan S, Nyholm L, Mihranyan A (2012b) In vitro and in vivo toxicity of rinsed and aged nanocellulose-polypyrrole composites. J Biomed Mater Res A 100A:2128–2138. doi:10.1002/Jbm.A.34070
Ferraz N, Leschinskaya A, Toomadj F, Fellström B, Strømme M, Mihranyan A (2013) Membrane characterization and solute diffusion in porous composite nanocellulose membranes for hemodialysis. Cellulose 20:2959–2970. doi:10.1007/s10570-013-0045-x
Hua K, Carlsson DO, Ålander E, Lindström T, Strømme M, Mihranyan A, Ferraz N (2014) Translational study between structure and biological response of nanocellulose from wood and green algae. RSC Adv 4:2892–2903. doi:10.1039/C3ra45553j
Hua K, Ålander E, Lindström T, Mihranyan A, Strømme M, Ferraz N (2015) Surface chemistry of nanocellulose fibers directs monocyte/macrophage response. Biomacromolecules. doi:10.1021/acs.biomac.5b00727
Irwin EF, Saha K, Rosenbluth M, Gamble LJ, Castner DG, Healy KE (2008) Modulus-dependent macrophage adhesion and behavior. J Biomat Sci Polym E 19:1363–1382. doi:10.1163/156856208786052407
Jenney CR, Anderson JM (2000) Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res 49:435–447. doi:10.1002/(SICI)1097-4636(20000315)49:4<435:AID-JBM2>3.0.CO;2-Y
Jones JA, Chang DT, Meyerson H, Colton E, Kwon IK, Matsuda T, Anderson JM (2007) Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res A 83A:585–596. doi:10.1002/Jbm.A.31221
Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132:41719
Kangas H, Lahtinen P, Sneck A, Saariaho AM, Laitinen O, Hellen E (2014) Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods. Nord Pulp Pap Res J 29:129–143
Katz SB, Rodger P, Scallon Anthony M (1984) The determination of strong and weak acidic groups in sulfite pulps. Svensk Papperstidning 87:48–53
Khang D, Liu-Snyder P, Pareta R, Lu J, Webster TJ (2009) Reduced responses of macrophages on nanometer surface features of altered alumina crystalline phases. Acta Biomater 5:1425–1432. doi:10.1016/j.actbio.2009.01.031
Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Edit 50:5438–5466. doi:10.1002/anie.201001273
Labow RS, Meek E, Santerre JP (2001) Model systems to assess the destructive potential of human neutrophils and monocyte-derived macrophages during the acute and chronic phases of inflammation. J Biomed Mater Res 54:189–197. doi:10.1002/1097-4636(200102)54:2<189:Aid-Jbm5>3.0.Co;2-8
Le Bras D, Strømme M, Mihranyan A (2015) Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications. J Phys Chem B 119:5911–5917. doi:10.1021/acs.jpcb.5b00715
Lee HS, Stachelek SJ, Tomczyk N, Finley MJ, Composto RJ, Eckmann DM (2013) Correlating macrophage morphology and cytokine production resulting from biomaterial contact. J Biomed Mater Res A 101:203–212. doi:10.1002/Jbm.A.34309
Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. doi:10.1016/j.eurpolymj.2014.07.025
Lindström T, Aulin C, Naderi A, Ankerfors M (2014) Microfibrillated cellulose. Encycl Polym Sci Technol. doi:10.1002/0471440264.pst614
McBane JE, Matheson LA, Sharifpoor S, Santerre JP, Labow RS (2009) Effect of polyurethane chemistry and protein coating on monocyte differentiation towards a wound healing phenotype macrophage. Biomaterials 30:5497–5504. doi:10.1016/j.biomaterials.2009.07.010
Metreveli G, Wagberg L, Emmoth E, Belak S, Strømme M, Mihranyan A (2014) A size-exclusion nanocellulose filter paper for virus removal. Adv Healthc Mater 3:1546–1550. doi:10.1002/adhm.201300641
Mihranyan A (2011) Cellulose from Cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Polym Sci 119:2449–2460. doi:10.1002/App.32959
Mihranyan A, Andersson SB, Ek R (2004) Sorption of nicotine to cellulose powders. Eur J Pharm Sci 22:279–286. doi:10.1016/j.ejps.2004.03.012
Mihranyan A, Edsman K, Strømme M (2007) Rheological properties of cellulose hydrogels prepared from Cladophora cellulose powder. Food Hydrocolloid 21:267–272. doi:10.1016/j.foodhyd.2006.04.003
Mihranyan A, Esmaeili M, Razaq A, Alexeichik D, Lindström T (2012) Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes. J Mater Sci 47:4463–4472. doi:10.1007/s10853-012-6305-6
Oliveira MI, Santos SG, Oliveira MJ, Torres AL, Barbosa MA (2012) Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation. Eur Cells Mater 24:136–153
Park EK, Jung HS, Yang HI, Yoo MC, Kim C, Kim KS (2007) Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res 56:45–50. doi:10.1007/s00011-007-6115-5
Quellmalz A, Mihranyan A (2015) Citric acid cross-linked nanocellulose-based paper for size-exclusion nanofiltration. ACS Biomater Sci Eng 4:271–276. doi:10.1021/ab500161x
Razaq A, Nyström G, Strømme M, Mihranyan A, Nyholm L (2011a) High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers. PLoS ONE. doi:10.1371/journal.pone.0029243
Razaq A, Strømme M, Nyholm L, Mihranyan A (2011b) Electrochemically controlled separation of DNA oligomers with high surface area conducting paper electrode. ECS Trans 35:135–142. doi:10.1149/1.3571986
Refai AK, Textor M, Brunette DM, Waterfield JD (2004) Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines. J Biomed Mater Res A 70A:194–205. doi:10.1002/Jbm.A.30075
Rhim JW, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci 47:411–433. doi:10.1080/10408390600846366
Rubino S, Razaq A, Nyholm L, Strømme M, Leifer K, Mihranyan A (2010) Spatial mapping of elemental distributions in polypyrrole-cellulose nanofibers using energy-filtered transmission electron microscopy. J Phys Chem B 114:13644–13649. doi:10.1021/Jp106317p
Rumalla VK, Borah GL (2001) Cytokines, growth factors, and plastic surgery. Plast Reconstr Surg 108:719–733. doi:10.1097/00006534-200109010-00019
Saino E, Focarete ML, Gualandi C, Emanuele E, Cornaglia AI, Imbriani M, Visai L (2011) Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines. Biomacromolecules 12:1900–1911. doi:10.1021/Bm200248h
Sandquist D (2013) New horizons for microfibrillated cellulose. Appita J 66:156–162
Schutte RJ, Parisi-Amon A, Reichert WM (2009) Cytokine profiling using monocytes/macrophages cultured on common biomaterials with a range of surface chemistries. J Biomed Mater Res A 88A:128–139. doi:10.1002/Jbm.A.31863
Shen MC, Horbett TA (2001) The effects of surface chemistry and adsorbed proteins on monocyte/macrophage adhesion to chemically modified polystyrene surfaces. J Biomed Mater Res 57:336–345. doi:10.1002/1097-4636(20011205)57:3<336:Aid-Jbm1176>3.0.Co;2-E
Sinno H, Prakash S (2013) Complements and the wound healing cascade: an updated review. Plast Surg Int 2013:146764. doi:10.1155/2013/146764
Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi:10.1007/s10570-010-9405-y
Strømme M, Mihranyan A, Ek R (2002) What to do with all these algae? Mater Lett 57:569–572. doi:10.1016/S0167-577x(02)00831-5
Strømme M, Mihranyan A, Ek R, Niklasson GA (2003) Fractal dimension of cellulose powders analyzed by multilayer BET adsorption of water and nitrogen. J Phys Chem B 107:14378–14382. doi:10.1021/Jp034117w
Tarnuzzer RW, Schultz GS (1996) Biochemical analysis of acute and chronic wound environments. Wound Repair Regen 4:321–325. doi:10.1046/j.1524-475X.1996.40307.x
Wójciak-Stothard B, Curtis A, Monaghan W, Macdonald K, Wilkinson C (1996) Guidance and activation of murine macrophages by nanometric scale topography. Exp Cell Res 223:426–435. doi:10.1006/excr.1996.0098
Young TH, Lin DT, Chen LY (2000) Human monocyte adhesion and activation on crystalline polymers with different morphology and wettability in vitro. J Biomed Mater Res 50:490–498. doi:10.1002/(Sici)1097-4636(20000615)50:4<490:Aid-Jbm4>3.0.Co;2-N
Acknowledgments
The cell studies were performed at the BioMat platform, Science for Life Laboratory, Uppsala University. FORMAS, The Bo Rydin Foundation and The Olle Engkvist Byggmästare Foundation are gratefully acknowledged for their financial support. K.H. thanks the China Scholarship Council (CSC) for financial support. A.M. is a Wallenberg Academy Fellow and thanks the Knut and Alice Wallenberg Foundation for their continued support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hua, K., Strømme, M., Mihranyan, A. et al. Nanocellulose from green algae modulates the in vitro inflammatory response of monocytes/macrophages. Cellulose 22, 3673–3688 (2015). https://doi.org/10.1007/s10570-015-0772-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-015-0772-2