Skip to main content
Log in

Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We present the first report on the extraction and structure of cellulose nanocrystals (CNCs) from waste kelp residue after alginate extraction. CNCs were successfully prepared from this species of brown algae residue at a 9.6 % yield by a series of procedures involving swelling treatment, residual alginate isolation, ultrasonic smashing, bleaching, delignification and sulfuric acid hydrolysis. The high aspect ratio of CNCs with a crystallinity index of 74.5 % was observed by X-ray diffraction, transmission electronic microscopy and atomic force microscopy. Results clearly indicated that the selected multiple-step procedures provided the possibility of chemical cleavage of non-cellulosic components of kelp structure and then of fabrication of CNC nanowhiskers. Interestingly, stable aqueous and ethanol colloidal suspensions were determined by zeta potential measurement. In addition, porous CNC aerogels with interconnected fibrillar open networks were finally prepared using a freeze-drying process. This work mainly aimed to reuse industrial deaglinate kelp residue, giving it a useful application and preventing its role as an environmental pollutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475

    Article  CAS  Google Scholar 

  • Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6:3298–3305

    Article  CAS  Google Scholar 

  • Bendahou A, Habibi Y, Kaddami H, Dufresne A (2009) Physico-chemical characterization of palm from phoenix dactylifera-l, preparation of cellulose whiskers and natural rubber-based nanocomposites. J Biobased Mater Bioenergy 3:81–90

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Strategies for preparation of cellulose whiskers from microcrystalline cellulose as reinforcement in nanocomposites. ACS Symposium Series. Cellulose Nanocomposites, pp 10–25

  • Brito BSL, Pereira FV, Putaux J-L, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19(5):1527–1536

    Article  CAS  Google Scholar 

  • Cao X, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8(3):899–904

    Article  CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Stumborg M, Huneault MA (2008) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109:3804–3810

    Article  CAS  Google Scholar 

  • Chang S-T, Chen L-C, Lin S-B, Chen H-H (2012) Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocoll 27(1):137–144

    Article  CAS  Google Scholar 

  • de Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270

    Article  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65

    Article  CAS  Google Scholar 

  • Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30

    Article  CAS  Google Scholar 

  • Fox J, Wie JJ, Greenland BW, Burattini S, Hayes W, Colquhoun HM, Mackay ME, Rowan SJ (2012) High-strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc 134(11):5362–5368

    Article  CAS  Google Scholar 

  • Gu Y, Liu X, Niu T, Huang J (2010) Superparamagnetic hierarchical material fabricated by protein molecule assembly on natural cellulose nanofibres. Chem Commun 46(33):6096–6098

    Article  CAS  Google Scholar 

  • Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT, McGehee MD, Wågberg L, Cui Y (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6(2):513–518

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Lacava LM, Lacava BM, Azevedo RB, Lacava ZGM, Buske N, Tronconi AL, Morais PC (2001) Nanoparticle sizing: a comparative study using atomic force microscopy, transmission electron microscopy, and ferromagnetic resonance. J Mag Mag Mat 225(1–2):79–83

    Article  CAS  Google Scholar 

  • Liu H, Song J, Shang S, Song Z, Wang D (2012) Cellulose nanocrystal/silver nanoparticle composites as bifunctional nanofillers within waterborne polyurethane. ACS Appl Mater Interfaces 4(5):2413–2419

    Article  CAS  Google Scholar 

  • Lu P, Hsieh Y-L (2012a) Cellulose isolation and core–shell nanostructures of cellulose nanocrystals from chardonnay grape skins. Carbohydr Polym 87(4):2546–2553

    Article  CAS  Google Scholar 

  • Lu P, Hsieh Y-L (2012b) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87(1):564–573

    Article  CAS  Google Scholar 

  • Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299

    Article  CAS  Google Scholar 

  • Mangiante G, Alcouffe P, Burdin B, Gaborieau M, Zeno E, Petit-Conil M, Bernard J, Charlot A, Fleury E (2013) Green nondegrading approach to Alkyne-functionalized cellulose fibers and biohybrids thereof: synthesis and mapping of the derivatization. Biomacromolecules 14(1):254–263

    Article  CAS  Google Scholar 

  • Mihranyan A, Llagostera AP, Karmhag R, Strømme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269:433–442

    Article  CAS  Google Scholar 

  • Mihranyan A, Nyholm L, Bennett AEG, Strømme M (2008) A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose. J Phys Chem B 112:12249–12255

    Article  CAS  Google Scholar 

  • Mirhosseini H, Tan CP, Hamid NSA, Yusof S (2008) Effect of Arabic gum, xanthan gum and orange oil contents on zeta-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloid Surface A 315:47–56

    Article  CAS  Google Scholar 

  • Pan H, Song L, Ma L, Hu Y (2012) Transparent epoxy acrylate resin nanocomposites reinforced with cellulose nanocrystals. Ind Eng Chem Res 51(50):16326–16332

    Article  CAS  Google Scholar 

  • Revol J-F, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Samarakoon K, Jeon Y-J (2012) Bio-functionalities of proteins derived from marine algae—A review. Food Res Int 48(2):948–960

  • Samir MA, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37(11):4313–4316

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832

    Article  CAS  Google Scholar 

  • Sharma HSS, Carmichael E, Muhamad M, McCall D, Andrews F, Lyons G, McRoberts WC, Hornsby PR (2012) Biorefining of perennial ryegrass for the production of nanofibrillated cellulose. RSC Adv 2:6424–6437

    Article  CAS  Google Scholar 

  • Tang LR, Huang B, Ou W, Chen XR, Chen YD (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Bioresour Technol 102(23):10973–10977

    Article  CAS  Google Scholar 

  • Turrentine JW, Tanner HG (1924) Potash from Kelp. Ind Eng Chem 16(3):242–248

    Article  CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493

    Article  CAS  Google Scholar 

  • Wang S-Y, Zhu B-B, Li D-Z, Fu X-Z, Shi L (2012) Preparation and characterization of TiO2/SPI composite film. Mater Lett 83:42–45

    Article  CAS  Google Scholar 

  • Wang Z, Sun X-X, Lian Z-X, Wang X-X, Zhou J, Ma Z-S (2013a) The effects of ultrasonic/microwave assisted treatment on the properties of soy protein isolate/microcrystalline wheat-bran cellulose film. J Food Eng 114(2):183–191

    Article  CAS  Google Scholar 

  • Wang QQ, Zhu JY, Considine JM (2013b) Strong and optically transparent films prepared using cellulosic solid residue (CSR) recovered from cellulose nanocrystals (CNC) production waste stream. ACS Appl Mater Interfaces 5(7):2527–2534

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Science and Technology Commission of Shanghai Municipality (13ZR1415100, 13JC1402700, 15ZR1415100) and Shanghai Foundation of Excellent Young University Teachers. The authors are also grateful to the Instrumental Analysis & Research Center of Shanghai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Meng, X., Zhao, J. et al. Extraction and preparation of cellulose nanocrystals from dealginate kelp residue: structures and morphological characterization. Cellulose 22, 1763–1772 (2015). https://doi.org/10.1007/s10570-015-0617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0617-z

Keywords

Navigation