Skip to main content
Log in

Spherical cellulose gel particles with donut-shaped interior structures

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Partially carboxylated cellulose wood fibers (CMF) with highly swollen balloon-like structures were ultrasonicated to produce spherical cellulose gel particles with donut-shaped interior structure. The formation of these particles is most likely due to the characteristic microfibril arrangements in swollen CMF consisting of alternating regions of “balloons” and “collars”, which have different structural rigidity. Upon applying an intense mechanical energy, the more physically strained parts break up prior to the flexible areas. Hence the helically extended S1 microfibrils and the axially compressed S3 layers are damaged first, while partially or fully carboxymethylated flexible cellulose chains in the S2 layers are rearranging themselves around the tightly wound collars. The interior donut structure likely originates from the collars, which do not collapse upon drying. The carboxymethylated spherical cellulose gel particles have a wide size distributions ranging from 15 to 200 μm in diameter with excellent rewettability and pH sensitivity in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bochek AM, Zabivalova NM, Yudin VE et al (2011) Properties of carboxymethyl cellulose aqueous solutions with nanoparticle additives and the related composite films. Polym Sci Ser A 53:1167–1174. doi:10.1134/S0965545X11120029

    Article  CAS  Google Scholar 

  • Booker RE, Sell J (1998) The nanostructure of the cell wall of softwoods and its functions in a living tree. Holz als Roh- und Werkstoff 56(1):1–8. doi:10.1007/s001070050255

  • Chen H, Fan M (2008) Novel thermally sensitive pH-dependent chitosan/carboxymethyl cellulose hydrogels. J Bioact Compat Polym 23:38–48. doi:10.1177/0883911507085070

    Article  Google Scholar 

  • Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose part 1: free floating cotton and wood fibres in N-Methylmorpholine-N-oxide–water mixtures. Macromol Symp 244:1–18. doi:10.1002/masy.200651201

    Article  CAS  Google Scholar 

  • Dhar N, Akhlaghi SP, Tam KC (2012) Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose and modified methyl cellulose. Carbohydr Polym 87:101–109. doi:10.1016/j.carbpol.2011.07.022

    Article  CAS  Google Scholar 

  • Eyholzer C, Bordeanu N, Lopez-Suevos F et al (2009) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30. doi:10.1007/s10570-009-9372-3

    Article  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. doi:10.1039/c0nr00583e

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466. doi:10.1007/s00339-007-4175-6

    Article  CAS  Google Scholar 

  • Jardeby K, Lennholm H, Germgård U (2004) Characterisation of the undissolved residuals ID CMC-solutions. Cellulose 11:195–202

  • Jardeby K, Germgard U, Kreutz B et al (2005a) The influence of fibre wall thickness on the undissolved residuals in CMC solutions. Cellulose 12:167–175. doi:10.1007/s10570-004-1371-9

    Article  CAS  Google Scholar 

  • Jardeby K, Germgård U, Kreutz B et al (2005b) Effect of pulp composition on the characteristics of residuals in CMC made from such pulps. Cellulose 12:385–393. doi:10.1007/s10570-005-2202-3

    Article  CAS  Google Scholar 

  • Jiang L, Li Y, Zhang L, Wang X (2009) Preparation and characterization of a novel composite containing carboxymethyl cellulose used for bone repair. Mater Sci Eng C 29:193–198. doi:10.1016/j.msec.2008.06.009

    Article  CAS  Google Scholar 

  • Khullar R, Varshney VK, Naithani S et al (2005) Carboxymethylation of cellulosic material (average degree of polymerization 2600) isolated from cotton (Gossypium) linters with respect to degree of substitution and rheological behavior. J Appl Polym Sci 96:1477–1482. doi:10.1002/app.21645

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  • Le Moigne N, Navard P (2009) Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose 17:31–45. doi:10.1007/s10570-009-9370-5

    Article  Google Scholar 

  • Le Moigne N, Montes E, Pannetier C et al (2008) Gradient in dissolution capacity of successively deposited cell wall layers in cotton fibres. Macromol Symp 262:65–71. doi:10.1002/masy.200850207

    Article  Google Scholar 

  • Le Moigne N, Bikard J, Navard P (2010a) Rotation and contraction of native and regenerated cellulose fibers upon swelling and dissolution: the role of morphological and stress unbalances. Cellulose 17:507–519. doi:10.1007/s10570-009-9395-9

    Article  CAS  Google Scholar 

  • Le Moigne N, Jardeby K, Navard P (2010b) Structural changes and alkaline solubility of wood cellulose fibers after enzymatic peeling treatment. Carbohydr Polym 79:325–332. doi:10.1016/j.carbpol.2009.08.009

    Article  Google Scholar 

  • Liimatainen H, Visanko M (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13:1592–1597

    Article  CAS  Google Scholar 

  • Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047. doi:10.1039/c2sm27344f

    Article  CAS  Google Scholar 

  • Pelton R, Hoare T (2011) Microgels and their synthesis: an introduction. In: Microgel suspensions: fundamentals and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–32. doi:10.1002/9783527632992.ch1

  • Qi H, Liebert T, Meister F et al (2010) Homogenous carboxymethylation of cellulose in the new alkaline solvent LiOH/urea aqueous solution. Macromol Symp 294:125–132. doi:10.1002/masy.200900166

    Article  CAS  Google Scholar 

  • Rácz I, Borsa J (1997) Swelling of carboxymethylated cellulose fibres. Cellulose 4:293–303

    Article  Google Scholar 

  • Rathna GVN, Mohan Rao DV, Chatterji PR (1996) Hydrogels of gelatin-sodium carboxymethyl cellulose: synthesis and swelling kinetics. J Macromol Sci Part A 33:1199–1207. doi:10.1080/10601329608010914

    Article  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. doi:10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Sim G, van de Ven TGM (2015) The S3 layer isolated from carboxymethylated cellulose wood fibers. Cellulose 22(1):45-52. doi:10.1007/s10570-014-0503-0

    Google Scholar 

  • Sim G, Alam M, Godbout L, van de Ven TGM (2014) Structure of swollen carboxylated cellulose fibers. Cellulose 21:4595–4606. doi:10.1007/s10570-014-0425-x

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi:10.1007/s10570-010-9405-y

    Article  Google Scholar 

  • Tejado A, Alam MN, Antal M et al (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19:831–842. doi:10.1007/s10570-012-9694-4

    Article  CAS  Google Scholar 

  • Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12:348–353. doi:10.1021/bm101103p

  • Van de Ven TGM, Saint-Cyr K, Allix M (2007) Adsorption of toluidine blue on pulp fibers. Colloids Surf A Physicochem Eng Asp 294:1–7. doi:10.1016/j.colsurfa.2006.07.040

    Article  Google Scholar 

  • Yang H, Tejado A, Alam N et al (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28:7834–7842. doi:10.1021/la2049663

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an NSERC Industrial Research Chair, supported by FPInnovations, by the NSERC Green Fibre Network, and by the FQRNT Centre for Self-Assembled Chemical Structures. Special thanks to McGill Cell Imaging and Analysis Network and McGill Facility for Electron Microscopy Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo G. M. van de Ven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, G., van de Ven, T.G.M. Spherical cellulose gel particles with donut-shaped interior structures. Cellulose 22, 1019–1026 (2015). https://doi.org/10.1007/s10570-015-0560-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0560-z

Keywords

Navigation