Skip to main content
Log in

The effect of carboxylated nanocrystalline cellulose on the mechanical, thermal and barrier properties of cysteine cross-linked gliadin nanocomposite

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanocrystalline cellulose (NCC), prepared by acidic hydrolysis of microcrystalline cellulose (MCC), was oxidized with the TEMPO–NaBr–NaOCl system and subjected to ultrasonic treatment. Carboxylated NCC (C.NCC) having high carboxylate content (%) was thereby produced directly. Modified NCC was then incorporated into gliadin matrices and the effect of their loading content (1, 2.5, 5, 7.5 and 10 wt%) on microstructural, mechanical, thermal and barrier properties of the ensuing nanocomposites were characterized. C.NCC resulted in improved tensile strength (σm) and storage modulus (E′) that can be ascribed to the strong interactions between the filler and the gliadin matrix. The graphs obtained from differential scanning calorimetry (DSC) indicated an optimum in glass transition temperature (T g ) at 5 % C.NCC content but thermogravimetric analysis (TGA) curves revealed that C.NCC did not significantly affect the thermal stability of the nanocomposites. Water sorption (WS) decreased with increasing C.NCC content as expected. Furthermore, upon increasing the filler concentration to 10 wt%, the water vapor permeability (WVP) decreased and reached a minimum value at 7.5 wt% loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdollahi M, Alboofetileh A, Behrooz R, Rezaei M, Miraki R (2013) Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. Int J Biol Macromol 54:166–173

    Article  CAS  Google Scholar 

  • Andrady AL, Neal MA (2009) Applications and societal benefits of plastics. Philos Trans R Soc B 364:1977–1984

    Article  CAS  Google Scholar 

  • Azeredo HMC, Mattoso LHC, Wood D, Williams TG, Bustillos RJA, McHugh TH (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74:31–35

    Article  Google Scholar 

  • Balaguer MP, Gómez-Estaca J, Gavara R, Hernández-Muñoz P (2011) Functional properties of bioplastics made from wheat gliadins modified with cinnamaldehyde. J Agric Food Chem 59(12):6689–6695

    Article  CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2(7):502–510

    Article  CAS  Google Scholar 

  • Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19(38):7137–7145

    Article  CAS  Google Scholar 

  • Chang PR, Jian R, Zheng P, Yu J, Ma X (2010) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr Polym 79(2):301–305

    Article  CAS  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial: review article. Mater Today 16(6):220–227

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20(1):583–588

    Article  CAS  Google Scholar 

  • George J, Ramana KV, Bawa AS (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48(1):50–57

    Article  CAS  Google Scholar 

  • Gontard N, Guilbert S (2010) Mass transfer in novel “Food Contact Materials”: scales and stakes. Jpn J Food E 11(4):153–159

    Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687

    Article  CAS  Google Scholar 

  • Hamad W, Hu T (2010) Structure-process-yield interactions in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402

    CAS  Google Scholar 

  • Hernández-Muñoz P, Lagaron JM, Lopez-Rubio A, Gavara R (2004) Gliadins polymerized with cysteine: effects on the physical and water barrier properties of derived films. Biomacromolecules 5(4):1503–1510

    Article  Google Scholar 

  • Hernández-Muñoz P, Kanavouras A, Lagaron JM, Gavara R (2005) Development and characterization of films based on chemically cross-linked gliadins. J Agric Food Chem 53(21):8216–8223

    Article  Google Scholar 

  • Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc Lond B Biol Sci 364(1526):2115–2126

    Article  CAS  Google Scholar 

  • Ibbett R, Gaddipati S, Hill S, Tucker G (2013) Structural reorganisation of cellulose fibrils in hydrothermally deconstructed lignocellulosic biomass and relationships with enzyme digestibility. Biotechnol Biofuels 6:33

    Article  CAS  Google Scholar 

  • Khwaldia K, Arab-Tehrany E, Desobry S (2010) Biopolymer coatings on paper packaging materials. Compr Rev Food Sci Food Saf 9:82–91

    Article  CAS  Google Scholar 

  • Kljun A, Benians TAS, Goubet F, Meulewaeter F, Knox JP, Blackburn RS (2011) Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-Ray diffraction, and carbohydrate-binding module probes. Biomacromolecules 12(11):4121–4126

    Article  CAS  Google Scholar 

  • Leceta IG, Guerrero LP, Ibarburu I, Duenas MT, de la Caba K (2013) Characterization and antimicrobial analysis of chitosan-based films. J Food Eng 116:889–899

    Article  CAS  Google Scholar 

  • Lu H, Gui Y, Zheng L, Liu X (2013) Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res Int 50(1):121–128

    Article  CAS  Google Scholar 

  • Majzoobi M, Abedi E, Farahnaky A, Aminlar M (2012) Functional properties of acetylated glutenin and gliadin at varying pH values. Food Chem 133(4):1402–1407

    Article  CAS  Google Scholar 

  • Male KB, Leung ACW, Montes J, Kamen A, Luong JHT (2012) Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge. Nanoscale 4:1373–1379

    Article  CAS  Google Scholar 

  • Micard V, Belamri R, Morel M, Guilbert S (2000) Properties of chemically and physically treated wheat gluten films. J Agric Food Chem 48(7):2948–2953

    Article  CAS  Google Scholar 

  • Mohd Shaifol H (2010) Undergraduates Project Report (PSM) thesis, Universiti Malaysia Pahang

  • Moon R, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3943

    Article  CAS  Google Scholar 

  • Naji S, Razavi SMA, Karazhiyan H (2012) Effect of thermal treatment on functional properties of cress seed (Lepidium sativum) and xanthan gums: a com-parative study. Food Hydrocoll 28(1):75–81

    Article  CAS  Google Scholar 

  • Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320(1–2):248–258

    Article  CAS  Google Scholar 

  • Pasquini D, de Morais Teixeira E, Curvelo da Silva AA, Belgacem MN, Dufresne A (2010) Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind Crop Prod 32(3):486–490

    Article  CAS  Google Scholar 

  • Rafieian F, Simonsen J (2014) Fabrication and characterization of carboxylated cellulose nanocrystals reinforced glutenin nanocomposite. Cellulose 21(6):4167–4180

  • Rafieian F, Shahedi M, Keramat J, Simonsen J (2014a) Mechanical, thermal and barrier properties of nano-biocomposite based on gluten and carboxylated cellulose nanocrystals. Ind Crop Prod 53:282–288

    Article  CAS  Google Scholar 

  • Rafieian F, Shahedi M, Keramat J, Simonsen J (2014b) Thermomechanical and morphological properties of nanocomposite films from wheat gluten matrix and cellulose nanofibrils. J Food Sci 79(1):100–107

  • Reddy N, Yang Y (2010) Developing water stable gliadin films without using crosslinking agents. J Polym Environ 18(3):277–283

    Article  CAS  Google Scholar 

  • Rusli R, Rowan SJ, Rowan SJ, Weder C, Eichhorn SJ (2011) Stress transfer in cellulose nanowhisker composites-influence of whisker aspect ratio and surface charge. Biomacromolecules 12:1363–1369

    Article  CAS  Google Scholar 

  • Silvério HA, Flauzino Neto WP, Pasquini D (2013) Effect of incorporating cellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly(vinyl alcohol) nanocomposites. J Nanomater 2013: 9

  • Soares RMD, Maia GS, Rayas-Duarte P, Soldi V (2009) Properties of filmogenic solutions of gliadin cross-linked with 1-(3-dimethyl aminopropyl)-3-ethylcarbodiimide- hydrochloride/N-hydroxysuccinimide and cysteine. Food Hydrocoll 23(1):181–187

    Article  CAS  Google Scholar 

  • Song Y, Zheng Q, Liu C (2008) Green biocomposites from wheat gluten and hydroxyethyl cellulose: processing and properties. Ind crop prod 28:56–62

    Article  CAS  Google Scholar 

  • Song JH, Murphy RJ, Narayan R, Davies GBH (2009) Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc Lond B Biol Sci 364:2127–2139

    Article  CAS  Google Scholar 

  • Thompson RC, Swan SH, Moore CJ, vom Saal FS (2009) Our plastic age. Philos Trans R Soc B 364(1526):1973–1976

    Article  Google Scholar 

  • Tunc S, Angellier H, Cahyana Y, Chalier P, Gontard N, Gastaldi E (2007) Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. J Membr Sci 289(1–2):159–168

    Article  CAS  Google Scholar 

  • Wang Y (2010) M.Sc. Thesis, Hong Kong Polytechnic University

Download references

Acknowledgments

The authors gratefully acknowledge Adam Huntley (Chemistry Department, Oregon State University, Or, USA) for helping in DLS study. They would like also to extend their most sincere appreciation to Milo Clauson (Wood Science and Engineering Department, Oregon State University, Or, USA) for his helpful assistance in the DMA analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Rafieian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafieian, F., Simonsen, J. The effect of carboxylated nanocrystalline cellulose on the mechanical, thermal and barrier properties of cysteine cross-linked gliadin nanocomposite. Cellulose 22, 1175–1188 (2015). https://doi.org/10.1007/s10570-014-0489-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0489-7

Keywords

Navigation