Skip to main content
Log in

A study on the interaction of cationized chitosan with cellulose surfaces

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This investigation describes the interaction of trimethyl chitosans (TMCs) with surfaces of cellulose thin films. The irreversible deposition/adsorption of TMCs with different degrees of cationization was studied with regards to the salt concentration and pH. As substrates, cellulose thin films were prepared by spin coating from trimethylsilyl cellulose and subsequent regeneration to pure cellulose. The pH-dependent zeta potential of cellulose thin films and the charge of TMCs were determined by streaming potential and potentiometric charge titration methods. A quartz crystal microbalance with dissipation monitoring was further used as a nanogram sensitive balance to detect the amount of deposited TMCs and the swelling of the bound layers. The morphology of the coatings was additionally characterized by atomic force microscopy and related to the adsorption results. A lower degree of cationization leads to higher amounts of deposited TMCs at all salt concentrations. Higher amounts of salt increase the deposition of TMCs. Protonation of primary amino groups results in the immobilization of less material at lower pH values. The results from this work can further be extended to the modification of regenerated cellulosic materials to obtain surfaces, with amino- and trimethylammonium moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL (2011) Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J. Nanomater 2011:10. doi:10.1155/2011/721631

    Article  Google Scholar 

  • Bongiovanni R, Marchi S, Zeno E, Pollicino A, Thomas RR (2013) Water resistance improvement of filter paper by a UV-grafting modification with a fluoromonomer. Colloids Surf A 418:52–59

    Article  CAS  Google Scholar 

  • Breitwieser D, Spirk S, Fasl H, Ehmann HMA, Chemelli A, Reichel VE, Gspan C, Stana-Kleinschek K, Ribitsch V (2013) Design of simultaneous antimicrobial and anticoagulant surfaces based on nanoparticles and polysaccharides. J Mater Chem B 1(15):2022–2030

    Article  CAS  Google Scholar 

  • Buschle-Diller G, Inglesby MK, Wu Y (2005) Physicochemical properties of chemically and enzymatically modified cellulosic surfaces. Colloids Surf A 260(1–3):63–70

    Article  CAS  Google Scholar 

  • Čakara D, Fras L, Bračič M, Kleinschek KS (2009) Protonation behavior of cotton fabric with irreversibly adsorbed chitosan: a potentiometric titration study. Carbohydr Polym 78(1):36–40

    Article  Google Scholar 

  • Da Róz AL, Leite FL, Pereiro LV, Nascente PAP, Zucolotto V, Oliveira ON Jr, Carvalho AJF (2010) Adsorption of chitosan on spin-coated cellulose films. Carbohydr Polym 80(1):65–70

    Article  Google Scholar 

  • de Britto D, Celi Goy R, Campana Filho SP, Assis OBG (2011) Quaternary salts of chitosan: history, antimicrobial features, and prospects. Int J Carbohydr Chem. doi:10.1155/2011/312539

    Google Scholar 

  • Duker E, Lindström T (2008) On the mechanisms behind the ability of CMC to enhance paper strength. Nord Pulp Pap Res J 23(1):54–64

    Article  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • Eriksson M, Torgnysdotter A, Wågberg L (2006) Surface modification of wood fibers using the polyelectrolyte multilayer technique: effects on fiber joint and paper strength properties. Ind Eng Chem Res 45(15):5279–5286

    Article  CAS  Google Scholar 

  • Findenig G, Leimgruber S, Kargl R, Spirk S, Stana-Kleinschek K, Ribitsch V (2012) Creating water vapor barrier coatings from hydrophilic components. ACS Appl Mater Interfaces 4(6):3199–3206

    Article  CAS  Google Scholar 

  • Genco T, Zemljič L, Bračič M, Stana-Kleinschek K, Heinze T (2012) Characterization of viscose fibers modified with 6-deoxy-6-amino cellulose sulfate. Cellulose 19(6):2057–2067

    Article  CAS  Google Scholar 

  • Horvath AE, Lindström T, Laine J (2005) On the indirect polyelectrolyte titration of cellulosic fibers. conditions for charge stoichiometry and comparison with ESCA. Langmuir 22(2):824–830

    Article  Google Scholar 

  • Hubbe MA (2006) Sensing the electrokinetic potential of cellulosic fiber surfaces. BioResources 1(1):93–125

    Google Scholar 

  • Jin H, Lucia LA, Rojas OJ, Hubbe MA, Pawlak JJ (2012) Survey of soy protein flour as a novel dry strength agent for papermaking furnishes. J Agric Food Chem 60(39):9828–9833

    Article  CAS  Google Scholar 

  • Kargl R, Mohan T, Bračič M, Kulterer M, Doliška A, Stana-Kleinschek K, Ribitsch V (2012) Adsorption of carboxymethyl cellulose on polymer surfaces: evidence of a specific interaction with cellulose. Langmuir 28(31):11440–11447

    Article  CAS  Google Scholar 

  • Kargl R, Mohan T, Köstler S, Spirk S, Doliška A, Stana-Kleinschek K, Ribitsch V (2013) Functional patterning of biopolymer thin films using enzymes and lithographic methods. Adv Funct Mater 23(3):308–315

    Article  CAS  Google Scholar 

  • Khoshkava V, Kamal MR (2013) Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. Biomacromolecules 14(9):3155–3163

    Article  CAS  Google Scholar 

  • Köhnke T, Östlund Å, Brelid H (2011) Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics. Biomacromolecules 12(7):2633–2641

    Article  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    Article  CAS  Google Scholar 

  • Kontturi E, Thüne PC, Niemantsverdriet JW (2003) Cellulose model surfacessimplified preparation by spin coating and characterization by X-ray photoelectron spectroscopy, infrared spectroscopy, and atomic force Microscopy. Langmuir 19(14):5735–5741

    Article  CAS  Google Scholar 

  • Kontturi KS, Tammelin T, Johansson L-S, Stenius P (2008) Adsorption of cationic starch on cellulose studied by QCM-D. Langmuir 24(9):4743–4749

    Article  CAS  Google Scholar 

  • Liu Z, Choi H, Gatenholm P, Esker AR (2011) Quartz crystal microbalance with dissipation monitoring and surface plasmon resonance studies of carboxymethyl cellulose adsorption onto regenerated cellulose surfaces. Langmuir 27(14):8718–8728

    Article  CAS  Google Scholar 

  • Lokhande HT, Salvi AS (1976) Electrokinetic studies of cellulosic fibres I. Zeta potential of fibres dyed with reactive dyes. Colloid Polym Sci 254(11):1030–1041

    Article  CAS  Google Scholar 

  • Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution—surface interface. Biomacromolecules 4(5):1099–1120

    Article  CAS  Google Scholar 

  • Mohan T, Kargl R, Doliška A, Vesel A, Köstler S, Ribitsch V, Stana-Kleinschek K (2011) Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulose. J Colloid Interface Sci 358(2):604–610

    Article  CAS  Google Scholar 

  • Mourya VK, Inamdar N (2009) Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med 20(5):1057–1079

    Article  CAS  Google Scholar 

  • Nyström D, Lindqvist J, Östmark E, Antoni P, Carlmark A, Hult A, Malmström E (2009) Superhydrophobic and self-cleaning bio-fiber surfaces via atrp and subsequent postfunctionalization. ACS Appl Mater Interfaces 1(4):816–823

    Article  Google Scholar 

  • Orelma H, Filpponen I, Johansson L-S, Laine J, Rojas OJ (2011) Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules. Biomacromolecules 12(12):4311–4318

    Article  CAS  Google Scholar 

  • Orelma H, Teerinen T, Johansson L-S, Holappa S, Laine J (2012) CMC-modified cellulose biointerface for antibody conjugation. Biomacromolecules 13(4):1051–1058

    Article  CAS  Google Scholar 

  • Petersen H, Radosta S, Vorwerg W, Kießler B (2013) Cationic starch adsorption onto cellulosic pulp in the presence of other cationic synthetic additives. Colloid Surf A 433:1–8

    Article  CAS  Google Scholar 

  • Reischl M, Kostler S, Kellner G, Stana-Kleinschek K, Ribitsch V (2008) Oscillating streaming potential measurement system for macroscopic surfaces. Rev Sci Instrum 79(11):113902–113906

    Article  Google Scholar 

  • Rodahl M, Höök F, Krozer A, Brzezinski P, Kasemo B (1995) Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum 66(7):3924–3930

    Article  CAS  Google Scholar 

  • Rodriguez F, Sepulveda HM, Bruna J, Guarda A, Galotto MJ (2013) Development of cellulose eco-nanocomposites with antimicrobial properties oriented for food packaging. Packag Technol Sci 26(3):149–160

    Article  CAS  Google Scholar 

  • Sahni JK, Chopra S, Ahmad FJ, Khar RK (2008) Potential prospects of chitosan derivative trimethyl chitosan chloride (TMC) as a polymeric absorption enhancer: synthesis, characterization and applications. J. Pharm Pharmacol 60(9):1111–1119

    Article  CAS  Google Scholar 

  • Song J, Rojas OJ (2013) Approaching super-hydrophobicity from cellulosic materials: a Review (2013). Nord Pulp Pap Res J 26(2):216–238

    Article  Google Scholar 

  • Stana-Kleinschek K, Kreze T, Ribitsch V, Strnad S (2001) Reactivity and electrokinetical properties of different types of regenerated cellulose fibres. Colloid Surf A 195(1–3):275–284

    Article  CAS  Google Scholar 

  • Tan H, Ma R, Lin C, Liu Z, Tang T (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14(1):1854–1869

    Article  CAS  Google Scholar 

  • Ulbrich M, Radosta S, Kießler B, Vorwerg W (2012) Interaction of cationic starch derivatives and cellulose fibres in the wet end and its correlation to paper strength with a statistical evaluation. Starch Stärke 64(12):972–983

    CAS  Google Scholar 

  • Vasiljević J, Gorjanc M, Tomšič B, Orel B, Jerman I, Mozetič M, Vesel A, Simončič B (2013) The surface modification of cellulose fibres to create super-hydrophobic, oleophobic and self-cleaning properties. Cellulose 20(1):277–289

    Article  Google Scholar 

  • Werner C, König U, Augsburg A, Arnhold C, Körber H, Zimmermann R, Jacobasch HJ (1999) Electrokinetic surface characterization of biomedical polymers—a survey. Colloids Surf A 159(2–3):519–529

    Article  CAS  Google Scholar 

  • Yoon S-Y, Deng Y (2007) Experimental and modeling study of the strength properties of clay—starch composite filled papers. Ind Eng Chem Res 46(14):4883–4890

    Article  CAS  Google Scholar 

  • Zemljič L, Čakara D, Michaelis N, Heinze T, Stana Kleinschek K (2011) Protonation behavior of 6-deoxy-6-(2-aminoethyl)amino cellulose: a potentiometric titration study. Cellulose 18(1):33–43

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Ministry of Education and Science and support of the Republic of Slovenia through program P2 0118. The publication was produced within the framework of the operation entitled “Centre of Open innovation and ResEarch UM (CORE@UM).” The operation is co-funded by the European Regional Development Fund and conducted within the framework of the Operational Programme for Strengthening Regional Development Potentials for the period 2007–2013, development priority 1: “Competitiveness of companies and research excellence,” priority axis 1.1: “Encouraging competitive potential of enterprises and research excellence.” Prof. Volker Ribitsch from the Institute of Chemistry, University of Graz, Austria, is highly acknowledged for the zeta potential measurements of cellulose films and the fruitful discussions. Mr. Matej Bračič from the Faculty of Mechanical Engineering, University of Maribor, Slovenia, is highly appreciated for carrying out potentiometric charge titrations of the TMC samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert Kargl.

Additional information

Member of the European Polysaccharide Network of Excellence (EPNOE).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 764 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ristić, T., Mohan, T., Kargl, R. et al. A study on the interaction of cationized chitosan with cellulose surfaces. Cellulose 21, 2315–2325 (2014). https://doi.org/10.1007/s10570-014-0267-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0267-6

Keywords

Navigation