Skip to main content
Log in

Solvent impact on esterification and film formation ability of nanofibrillated cellulose

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study we have manufactured nanofibrillar cellulose and modified the fibre surface with ester groups in order to hydrophobise the surface. Nanofibrillated cellulose was chosen to demonstrate the phenomena, since due to its high surface area the effects at issue are pronounced. The prepared NFC ester derivatives were butyrate, hexanoate, benzoate, naphtoate, diphenyl acetate, stearate and palmitate. X-ray photoelectron spectroscopy, solid state NMR and contact angle measurements were used to demonstrate the chemical changes taking place on the cellulose surface. NFC ester derivatives can be prepared after a careful solvent exchange to a water-free solvent medium has been carried out. Butyl and palmitoyl esters were chosen for film forming tests due to the difference in their carbon chain lengths, and their contact angles and water vapour and oxygen permeation rates were studied. The prepared nanocellulose esters show increased hydrophobicity even at very low levels of substitution and readily form films when the films are prepared from acetone dispersions. The permeation rates suggest a potential use as barrier materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asikainen S, Fuhrmann A, Robertsen F (2010) Birch pulp fractions for fine paper and board. Nord Pulp Pap Res J 25:269–276

    Article  CAS  Google Scholar 

  • Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    Article  CAS  Google Scholar 

  • Beamson G, Briggs D (1992) High-resolution XPS of organic polymers, The scienta ESCA300 database. Wiley, New York

    Google Scholar 

  • Belgacem MN, Gandini A (2008) Chapter 18—surface modification of cellulose fibres. In: Belgacem MN, Gandini A (eds) Monomers polymers and composites from renewable resources. Elsevier, Amsterdam, pp 385–400

    Chapter  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268

    Article  CAS  Google Scholar 

  • Bras J, Vaca-Garcia C, Borredon M-E, Glasser W (2007) Oxygen and water vapor permeability of fully substituted long chain cellulose esters (LCCE). Cellulose 14(4):367–374

    Article  CAS  Google Scholar 

  • Capadona JR, van den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nano 2:765–769

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  CAS  Google Scholar 

  • Dogan N, McHugh TH (2007) Effects of microcrystalline cellulose on functional properties of hydroxy propyl methyl cellulose microcomposite films. J Food Sci 72:E016–E022

    Article  CAS  Google Scholar 

  • Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688

    Article  CAS  Google Scholar 

  • Eronen P, Österberg M, Heikkinen S, Tenkanen M, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290

    Article  CAS  Google Scholar 

  • Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575

    Article  Google Scholar 

  • Haugaard VK, Udsen A-M, Mortensen G, Hoegh L, Petersen K, Monahan F (2000) Food biopackaging. In: Weber CJ (ed) Biobased packaging materials for the food industry: status and perspectives (A European concerted action, PL98 4046), KVL, Copenhagen (Denmark), p 45–84

  • Hedenqvist MS (2005) Barrier packaging materials. In: Kutz M (ed) Handbook of environmental degradation of materials. William Andrew Publishing, Norwich. pp 547–563

  • Heinze T, Petzold K (2008) Chapter 16—Cellulose chemistry: novel products and synthesis paths. In: Belgacem MN, Gandini A (eds) Monomers Polymers and Composites from Renewable Resources. Elsevier, Amsterdam, pp 343–368

    Chapter  Google Scholar 

  • Heinze T, Dicke R, Koschella A, Kull AH, Klohr E, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  Google Scholar 

  • Hubbe M, Rojas O, Lucia L, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980

    Google Scholar 

  • ISO 2528:1995 Sheet materials—Determination of water vapour transmission rate—Gravimetric (dish) method

  • Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81:1109–1112

    Article  CAS  Google Scholar 

  • Jandura P, Kokta BV, Riedl B (2000) Fibrous long-chain organic acid cellulose esters and their characterization by diffuse reflectance FTIR spectroscopy, solid-state CP/MAS 13C-NMR, and X-ray diffraction. J Appl Polym Sci 78:1354–1365

    Article  CAS  Google Scholar 

  • Johansson L (2002) Monitoring fibre surfaces with XPS in papermaking processes. Microchim Acta 138:217–223

    Article  CAS  Google Scholar 

  • Johansson L, Campbell JM (2004) Reproducible XPS on biopolymers: cellulose studies. Surf Interface Anal 36:1018–1022

    Article  CAS  Google Scholar 

  • Johansson L, Campbell JM, Fardim P, Hultén AH, Boisvert J, Ernstsson M (2005) An XPS round robin investigation on analysis of wood pulp fibres and filter paper. Surf Sci 584:126–132

    Article  CAS  Google Scholar 

  • Johansson L, Tammelin T, Campbell JM, Setälä H, Österberg M (2011) Experimental evidence on medium driven cellulose surface adaptation demonstrated using nanofibrillated cellulose. Soft Matter 7:10917–10924

    Article  CAS  Google Scholar 

  • Junior De Menezes A, Siquiera G, Curvelo A, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563

    Article  Google Scholar 

  • Khan RA, Salmieri S, Dussault D, Uribe-Calderon J, Kamal MR, Safrany A, Lacroix M (2010) Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. J Agric Food Chem 58:7878–7885

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Mathew AP, Chakraborty A, Oksman K, Sain M (2006) The Structure and mechanical properties of cellulose nanocomposites prepared by Twin screw extrusion. In: Cellulose Nanocomposites. American Chemical Society, pp 114–131

  • Matsumura H, Sugiyama J, Glasser WG (2000) Cellulosic nanocomposites. I. Thermally deformable cellulose hexanoates from heterogeneous reaction. J Appl Polym Sci 78:2242–2253

    Article  CAS  Google Scholar 

  • McCreight K, Hoffman D, Hale W (2006) Crosslinkable cellulose ester compositions for films for use in optical devices. PCT Int Appl 2006-US20123, 2005-648808, 54

  • Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindström T, Siró I, Plackett D (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membr Sci 358:67–75

    Article  CAS  Google Scholar 

  • Nakagaito A, Yano H (2006) Nanocomposites based on cellulose microfibril. cellulose nanocomposites: processing, Characterization, and properties. ACS Symp Ser 938:151–168

    Article  CAS  Google Scholar 

  • Netravali A, Huang X, Mizuta K (2007) Advanced ‘green’ composites. Adv Compos Mater 16:269–282

    Article  CAS  Google Scholar 

  • Okubo K, Fujii T, Yamashita N (2005) Improvement of Interfacial Adhesion in Bamboo Polymer Composite Enhanced with Micro-Fibrillated Cellulose. JSME Int J Ser A Solid Mech Mater Eng 48:199–204

    Google Scholar 

  • Özgür Seydibeyoğlu M, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Composites Sci Technol 68:908–914

    Article  Google Scholar 

  • Plackett D, Anturi H, Hedenqvist M, Ankerfors M, Gällstedt M, Lindström T, Siró I (2010) Physical properties and morphology of films prepared from microfibrillated cellulose and microfibrillated cellulose in combination with amylopectin. J Appl Polym Sci 117(6):3601–3609

    CAS  Google Scholar 

  • Shimazaki Y, Miyazaki Y, Takezawa Y, Nogi M, Abe K, Ifuku S, Yano H (2007) Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules 8:2976–2978

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Svagan A, Samir M, Berglund L (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563

    Article  CAS  Google Scholar 

  • Uschanov P, Johansson L, Maunu S, Laine J (2011) Heterogeneous modification of various celluloses with fatty acids. Cellulose 18:393–404

    Article  CAS  Google Scholar 

  • Vuoti S, Laatikainen E, Heikkinen H, Johansson L-S, Saharinen E, Retulainen Elias (2012). Chemical modification of cellulosic fibers for better convertibility in packaging applications. Carbohydrate Polymers, in print, http://dx.doi.org/10.1016/j.carbpol.2012.07.053

  • Wang N, Ding E, Cheng R (2008) Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24:5–8

    Article  Google Scholar 

  • Yano H, Seki N, Ishida T (2008) Manufacture of nanofibers and nanofibers manufactured thereby. Jpn Kokai Tokkyo Koho 17:2007–2229

    Google Scholar 

  • Ye D (2007) Preparation of nanocellulose. Prog Chem 19:1568–1575

    CAS  Google Scholar 

  • Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carboh Polym 79:1086–1093

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Finnish Funding Agency for Technology and Innovation, Tekes, and companies within the Naseva II project are deeply acknowledged for the financial support. We would also like to thank UPM-Kymmene Oy for supplying the cellulose material. Finally we would like to acknowledge Mrs. Minna Kalliosaari, Mrs. Marketta Hiltunen, Mrs. Eija Silvast and Mrs. Vuokko Liukkonen for their excellent laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sauli Vuoti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuoti, S., Talja, R., Johansson, LS. et al. Solvent impact on esterification and film formation ability of nanofibrillated cellulose. Cellulose 20, 2359–2370 (2013). https://doi.org/10.1007/s10570-013-9983-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9983-6

Keywords

Navigation