Skip to main content
Log in

Stability and solution concentration enhancement of resveratrol by solid dispersion in cellulose derivative matrices

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Resveratrol is a highly biologically active phytoalexin, found in many plant materials that are common elements of the human diet, such as grapes, nuts, and red wine. The therapeutic or disease preventative potential of this natural polyphenolic antioxidant has been limited in part due to its poor aqueous solubility and low oral bioavailability. We hypothesized that solid dispersion of resveratrol (Res) in cellulose derivative matrices might afford amorphous dispersions, from which supersaturated Res solutions would be produced in the human gastrointestinal (GI) tract, resulting in higher Res bioavailability. We carried out structure–property studies employing cellulose esters with a range of physical characteristics but possessing features suitable for use in amorphous solid dispersions: carboxymethylcellulose acetate butyrate (CMCAB), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and cellulose acetate adipate propionate (CAAdP). The cellulose derivative results were compared with those of a negative control, pure crystalline Res, and a positive control, Res/poly(vinylpyrrolidinone) (PVP). Solid dispersions were characterized by powder X-ray diffraction (XRPD), modulated differential scanning calorimetry (MDSC), nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR) of solid dispersions. HPMCAS and PVP solid dispersions afforded faster and more complete Res release at pH 6.8; however Res is also released from PVP matrices at pH 1.2. The carboxyl-containing cellulose derivatives release Res to only a small extent at pH 1.2. This combination of solution and solid phase stabilization against crystallization, and pH-triggered drug release makes these cellulose esters attractive candidates for Res bioavailability enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amri A, Chaumeil JC, Sfar S, Charrueau C (2012) Administration of resveratrol: what formulation solutions to bioavailability limitations? J Contr Rel 158:182–193. doi:10.1016/j.jconrel.2011.09.083

    Article  CAS  Google Scholar 

  • Baird JA, Taylor LS (2012) Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Del Rev 64(5):396–421. doi:10.1016/j.addr.2011.07.009

    Article  CAS  Google Scholar 

  • Commodari F, Khiat A, Ibrahimi S, Brizius AR, Kalkstein N (2005) Comparison of the phytoestrogen trans-resveratrol (3,4′,5-trihydroxystilbene) structures from X-ray diffraction and solution NMR. Magn Reson Chem 43:567–572. doi:10.1002/mrc.1583

    Article  CAS  Google Scholar 

  • Das S, Lin HS, Ho PC, Ng KY (2008) The impact of aqueous solubility and dose on the pharmacokinetic profiles of resveratrol. Pharm Res 25(11):2593–2600. doi:10.1007/s11095-008-9677-1

    Article  CAS  Google Scholar 

  • Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JA (2008) Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm 5(6):1003–1019. doi:10.1021/mp8000793

    Article  CAS  Google Scholar 

  • Ilevbare GA, Liu H, Edgar KJ, Taylor LS (2012) Understanding polymer properties important for crystal growth inhibition: impact of chemically diverse polymers on solution crystal growth of ritonavir. Cryst Growth Des 12(6):3133–3143. doi:10.1021/cg300325p

    Article  CAS  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220. doi:10.1126/science.275.5297.218

    Article  CAS  Google Scholar 

  • Kar N, Liu H, Edgar KJ (2011) Synthesis of cellulose adipate derivatives. Biomacromolecules 12(4):1106–1115. doi:10.1021/bm101448f

    Article  CAS  Google Scholar 

  • Konno H, Taylor LS (2006) Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci 95(12):2692–2705. doi:10.1002/jps.20697

    Article  CAS  Google Scholar 

  • Kopp P (1998) Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ‘French paradox’? Eur J Endocrinol 138(6):619–620. doi:10.1530/eje.0.1380619

    Article  CAS  Google Scholar 

  • Krayz GT, Averbuch M, Berman A, Zalcenstein A, Jaffe I (2009) Oral delivery with novel solid dispersions: stable self-assembled formulations of lipophilic drugs with improved bioperformance. Drug Delivery Technol 9(36):38–43

    Google Scholar 

  • Kumpugdee-Vollrath M, Ibold Y (2012) Increasing solubility of poorly water soluble drug resveratrol by surfactants and cyclodextrins. Adv Mater Res 418–420:2231–2234. doi:10.4028, http://www.scientific.net/AMR.418-420.2231

  • Leuner C, Dressman JB (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50(1):47–60

    Article  CAS  Google Scholar 

  • Lucas-Abellán C, Fortea I, López-Nicolás JM, Núñez-Delicado E (2007) Cyclodextrins as resveratrol carrier system. Food Chem 104(1):39–44. doi:10.1016/j.foodchem.2006.10.068

    Article  Google Scholar 

  • Maier-Salamon A, Hagenauer B, Wirth M, Gabor F, Szekeres T, Jäger W (2006) Increased transport of resveratrol across monolayers of the human intestinal caco-2 cells is mediated by inhibition and saturation of metabolites. Pharm Res 23(9):2107–2115. doi:10.1007/s11095-006-9060-z

    Article  CAS  Google Scholar 

  • Miller JM, Beig A, Carr RA, Spence JK, Dahan A (2012) A win–win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm 9(7):2009–2016. doi:10.1021/mp300104s

    Article  CAS  Google Scholar 

  • Ndiaye M, Kumar R, Ahmad N (2011) Resveratrol in cancer management: where are we and where we go from here? Ann NY Acad Sci 1215(1):144–149. doi:10.1111/j.1749-6632.2010.05851.x

    Article  CAS  Google Scholar 

  • Park S-J, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H, Taussig R, Brown Alexandra L, Kim Myung K, Beaven Michael A, Burgin Alex B, Manganiello V, Chung Jay H (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148(3):421–433. doi:10.1016/j.cell.2012.01.017

    Article  CAS  Google Scholar 

  • Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K (2011) Clinical trials of resveratrol. Ann NY Acad Sci 1215(1):161–169. doi:10.1111/j.1749-6632.2010.05853.x

    Article  CAS  Google Scholar 

  • Posey-Dowty JD, Watterson TL, Wilson AK, Edgar KJ, Shelton MC, Lingerfelt LR (2007) Zero-order release formulations using a novel cellulose ester. Cellulose 14(1):73–83. doi:10.1007/s10570-006-9079-7

    Article  CAS  Google Scholar 

  • Qian F, Huang J, Hussain MA (2010) Drug–polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci 99(7):2941–2947. doi:10.1002/jps.22074

    CAS  Google Scholar 

  • Roberti M, Pizzirani D, Simoni D, Rondanin R, Baruchello R, Bonora C, Buscemi F, Grimaudo S, Tolomeo M (2003) Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents. J Med Chem 46(16):3546–3554. doi:10.1021/jm030785u

    Article  CAS  Google Scholar 

  • Rumondor AC, Stanford LA, Taylor LS (2009) Effects of polymer type and storage relative humidity on the kinetics of felodipine crystallization from amorphous solid dispersions. Pharm Res 26(12):2599–2606. doi:10.1007/s11095-009-9974-3

    Article  CAS  Google Scholar 

  • Santos AC, Veiga F, Ribeiro AJ (2011) New delivery systems to improve the bioavailability of resveratrol. Expert Opin Drug Deliv 8:973–990. doi:10.1517/17425247.2011.581655

    Article  CAS  Google Scholar 

  • Sapino S, Carlotti M, Caron G, Ugazio E, Cavalli R (2009) In silico design, photostability and biological properties of the complex resveratrol/hydroxypropyl-β-cyclodextrin. J Incl Phenom Macro 63(1):171–180. doi:10.1007/s10847-008-9504-7

    Article  CAS  Google Scholar 

  • Savouret JF, Quesne M (2002) Resveratrol and cancer: a review. Biomed Pharmacother 56(2):84–87. doi:10.1016/S0753-3322(01)00158-5

    Article  CAS  Google Scholar 

  • Shelton MC, Posey-Dowty JD, Lingerfelt LR, Kirk SK, Klein S, Edgar KJ (2009) Enhanced dissolution of poorly soluble drugs from solid dispersions in carboxymethylcellulose acetate butyrate matrices. In: Edgar KJ, Heinze T, Liebert T (eds) Polysaccharide materials: performance by design, vol 1017. American Chemical Society, Washington, pp 93–113

    Chapter  Google Scholar 

  • Simonelli AP, Mehta SC, Higuchi WI (1976) Dissolution rates of high energy sulfathiazole-povidone coprecipitates II: characterization of form of drug controlling its dissolution rate via solubility studies. J Pharm Sci 65(3):355–361. doi:10.1002/jps.2600650310

    Article  CAS  Google Scholar 

  • Trela BC, Waterhouse AL (1996) Resveratrol: isomeric molar absorptivities and stability. J Agr Food Chem 44(5):1253–1257. doi:10.1021/jf9504576

    Article  CAS  Google Scholar 

  • Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UK (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32(12):1377–1382. doi:10.1124/dmd.104.000885

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank USDA (Grant number 09-35603-05068) for financial support and the Virginia Tech Institute for Critical Technologies and Applied Science (ICTAS) for their support of this project. We thank Eastman Chemical Company and Shin-Etsu Ltd. for their gracious donations of CMCAB and HPMCAS, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Edgar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10570_2013_9889_MOESM1_ESM.doc

Standard curves of Res UV–Vis absorption versus concentration in ethanol and in pH 6.8 buffer are included (S1). XRPD patterns of Res/polymer 1/1 SDs (S2). Modulated DSC heating curve of Res/CMCAB 1/9 SD (S3) (DOC 333 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Wegiel, L.A., Taylor, L.S. et al. Stability and solution concentration enhancement of resveratrol by solid dispersion in cellulose derivative matrices. Cellulose 20, 1249–1260 (2013). https://doi.org/10.1007/s10570-013-9889-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9889-3

Keywords

Navigation