Skip to main content
Log in

NMR spectroscopic studies on dissolution of softwood pulp with enhanced reactivity

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

N-methylmorpholine N-oxide (NMMO) is a known cellulose solvent used in industrial scale (LyoCel process). We have studied interactions between pretreated softwood pulp fibers and aqueous NMMO using nuclear magnetic resonance (NMR) spectroscopic methods, including solid state cross polarisation magic angle spinning (CP-MAS) 13C and 15N spectroscopies, and 1H high resolution MAS NMR spectroscopy. Changes in both cellulose morphology and in accessibility of solvents were observed after the pulp samples that were exposed to solvent species were treated at elevated temperature. Evidence about interactions between cellulose and solvent components was observed already after a heat treatment of 15 min. The crystalline structure of cellulose was seen to remain intact for the first 30 min of heat treatment, at the same time there was a re-distribution of solvent species taking place. After a 90 min heat treatment the crystalline structure of cellulose had experienced major changes, and potential signs of regeneration into cellulose II were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ambjörnsson HA, Östberg L, Schenzel K, Larsson PT, Germgård U (2013) Enzyme pretreatment of dissolving pulp as a way to improve the following dissolution in NaOH/ZnO. Holzforschung 0(0):1–7. doi:10.1515/hf-2013-0070

    Google Scholar 

  • Atalla R, VanderHart D (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15(1):1–19

    Article  CAS  Google Scholar 

  • Atalla RH, Gast JC, Sindorf DW, Bartuska VJ, Maciel GE (1980) Carbon-13 NMR spectra of cellulose polymorphs. J Am Chem Soc 102(9):3249–3251

    Article  CAS  Google Scholar 

  • Bergenstråhle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose–water interfaces: NMR spin–lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112(9):2590–2595

    Article  Google Scholar 

  • Bergenstråhle-Wohlert M, Berglund LA, Brady JW, Larsson PT, Westlund PO, Wohlert J (2012) Concentration enrichment of urea at cellulose surfaces: results from molecular dynamics simulations and NMR spectroscopy. Cellulose 19:1–12

    Article  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  • Chanzy H, Dubé M, Marchessault RH (1979) Crystallization of cellulose with n-methylmorpholine n-oxide: a new method of texturing cellulose. J Polym Sci Polym Lett Ed 17(4):219–226

    Article  CAS  Google Scholar 

  • Chunilall V, Bush T, Larsson PT, Iversen T, Kindness A (2010) A CP/MAS 13C-NMR study of cellulose fibril aggregation in eucalyptus dissolving pulps during drying and the correlation between aggregate dimensions and chemical reactivity. Holzforschung 64:693–698

    Google Scholar 

  • Dawsey TR, McCormick CL (1990) The lithium chloride/dimethylacetamide solvent for cellulose: a literature review. J Macromol Sci Part C Polym Rev 30(3–4):405–440

    Article  Google Scholar 

  • Diez-Pena E, Quijada-Garrido I, Barrales-Rienda JM, Wilhelm M, Spiess HW (2002) Nmr studies of the structure and dynamics of polymer gels based on n-isopropylacrylamide (nipaam) and methacrylic acid (maa). Macromol Chem Phys 203(3):491–502

    Article  CAS  Google Scholar 

  • Earl WL, VanderHart DL (1980) High resolution, magic angle sampling spinning carbon-13 NMR of solid cellulose I. J Am Chem Soc 102(9):3251–3252

    Google Scholar 

  • Henriksson G, Christiernin M, Agnemo R (2005) Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp. J Ind Microbiol Biotechnol 32(5):211–214

    Article  CAS  Google Scholar 

  • Hofmann CH, Plamper FA, Scherzinger C, Hietala S, Richtering W (2013) Cononsolvency revisited: solvent entrapment by N-isopropylacrylamide and N,N-diethylacrylamide microgels in different water/methanol mixtures. Macromolecules 46(2):523–532

    Article  CAS  Google Scholar 

  • Hult EL, Liitiä T, Maunu SL, Hortling B, Iversen T (2002) A CP/MAS 13C-NMR study of cellulose structure on the surface of refined kraft pulp fibers. Carbohydr Polym 49(2):231–234

    Article  CAS  Google Scholar 

  • Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22(7):3168–3172

    Article  CAS  Google Scholar 

  • Kihlman M, Wallberg O, Stigsson L, Germgård U (2011) Dissolution of dissolving pulp in alkaline solvents after steam explosion pretreatments. Holzforschung 65:613–617

    Article  CAS  Google Scholar 

  • Knaus S, Bauer-Heim B (2003) Synthesis and properties of anionic cellulose ethers: influence of functional groups and molecular weight on flowability of concrete. Carbohydr Polym 53(4):383–394

    Article  CAS  Google Scholar 

  • Kono H, Erata T, Takai M (2003) Determination of the through-bond carbon–carbon and carbon–proton connectivities of the native celluloses in the solid state. Macromolecules 36(14):5131–5138

    Article  CAS  Google Scholar 

  • Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C NMR investigation of molecular ordering in celluloses. Carbohydr Res 302(1–2):19–25

    Article  CAS  Google Scholar 

  • Levis SR, Deasy PB (2001) Pharmaceutical applications of size reduced grades of surfactant co-processed microcrystalline cellulose. Int J Pharm 230(1–2):25–33

    Article  CAS  Google Scholar 

  • Marhöfer RJ, Kast KM, Schilling B, Bär HJ, Kast SM, Brickmann J (2000) Molecular dynamics simulations of tertiary systems of cellohexaose/aliphatic n-oxide/water. Macromol Chem Phys 201(15):2003–2007

    Article  Google Scholar 

  • Marshall K, Sixsmith D (1974) Some physical characteristics of microcrystalline cellulose 1. powders for pharmaceutical use. Drug Dev Ind Pharm 1(1):51–71

    Article  CAS  Google Scholar 

  • Martínez-Bisbal MC, Esteve V, Martínez-Granados B, Celda B (2011) Magnetic resonance microscopy contribution to interpret high-resolution magic angle spinning metabolomic data of human tumor tissue. J Biomed Biotechnol 2011

  • Newman RH (1999) Estimation of the relative proportions of cellulose Iα and Iβ in wood by carbon-13 NMR spectroscopy. Holzforschung 53(4):335–340

    Google Scholar 

  • Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69(11–12):1958–1961

    Article  CAS  Google Scholar 

  • Persson PV, Hafrén J, Fogden A, Daniel G, Iversen T (2004) Silica nanocasts of wood fibers: a study of cell-wall accessibility and structure. Biomacromolecules 5(3):1097–1101

    Article  CAS  Google Scholar 

  • Piotto M, Elbayed K, Wieruszeski JM, Lippens G (2005) Practical aspects of shimming a high resolution magic angle spinning probe. J Magn Reson 173(1):84–89

    Article  CAS  Google Scholar 

  • Potthast A, Rosenau T, Kosma P, Chen CL, Gratzl JS (2005) Confirmation of the presence of formaldehyde and N-(methylene)morpholinium cations as reactive species in the cellulose/NMMO/water system by trapping reactions. Holzforschung 54(1):101–103

    Google Scholar 

  • Rahkamo L, Siika-aho M, Viikari L, Leppänen T, Buchert J (1998) Effects of cellulases and hemicellulase on the alkaline solubility of dissolving pulps. Holzforschung 52(6):630–634

    Article  CAS  Google Scholar 

  • Rondeau-Mouro C, Crepeau MJ, Lahaye M (2003) Application of CP-MAS and liquid-like solid-state NMR experiments for the study of the ripening-associated cell wall changes in tomato. Int J Biol Macromol 31:235–244

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26(9):1763–1837

    Article  CAS  Google Scholar 

  • Rosenau T, Hofinger A, Potthast A, Kosma P (2003) On the conformation of the cellulose solvent N-methylmorpholine-N-oxide (NMMO) in solution. Polymer 44(20):6153–6158. doi:10.1016/S0032-3861(03)00663-3, URL http://www.sciencedirect.com/science/article/pii/S0032386103006633

    Google Scholar 

  • Sanguansri P, Augustin MA (2006) Nanoscale materials development - a food industry perspective. Trends Food Sci Technol 17(10):547–556

    Article  CAS  Google Scholar 

  • Sternberg U, Koch FT, Prieß W, Witter R (2003) Crystal structure refinements of cellulose polymorphs using solid state 13C chemical shifts. Cellulose 10:189–199

    Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975. doi:10.1021/ja025790m, URL http://pubs.acs.org/doi/abs/10.1021/ja025790m, http://pubs.acs.org/doi/pdf/10.1021/ja025790m

    Google Scholar 

  • Topgaard D, Söderman O (2002) Changes of cellulose fiber wall structure during drying investigated using NMR self-diffusion and relaxation experiments. Cellulose 9(2):139–147

    Article  CAS  Google Scholar 

  • Wang N, Ru G, Wang L, Feng J (2009) 1H MAS NMR studies of the phase separation of poly(n-isopropylacrylamide) gel in binary solvents. Langmuir 25(10):5898–5902

    Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312(3):123–129

    Article  CAS  Google Scholar 

  • Winter WT, Barnhart D (2010) HR-MAS: the other NMR approach to polysaccharide solids, chap 17, pp 261–270

  • Zhao H, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2007) Interactions between cellulose and N-methylmorpholine-N-oxide. Carbohydr Polym 67(1):97–103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Academy of Finland (project 123386) is greatly acknowledged for its financial support of this work, and VTT for providing the pulp samples originally made for WoodWisdom-Net Joint Research Programme (ReCell).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommi Virtanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virtanen, T., Maunu, S.L. NMR spectroscopic studies on dissolution of softwood pulp with enhanced reactivity. Cellulose 21, 153–165 (2014). https://doi.org/10.1007/s10570-013-0144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0144-8

Keywords

Navigation