Skip to main content

Advertisement

Log in

Cellulose nanofiber-based hydrogels with high mechanical strength

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The preparation of high-strength hydrogels from plant-based cellulose nanofibers by simple alkaline treatment is described herein. We isolated the cellulose nanofibers with a uniform width of approximately 15 nm from wood and we prepared two types of hydrogel sheet with different crystal forms (celluloses I and II) in 9 and 15 wt% aqueous sodium hydroxide solutions. Both of the hydrogels exhibited high tensile properties because of the crystalline network in the gels. Especially, the nanofiber hydrogel with a cellulose II crystal structure with the swelling degree of 13.4 achieved a Young’s modulus and tensile strength in excess of 35 and 5 MPa respectively, because it had a continuous and strong nano-network formed via the interdigitation of the neighboring nanofibers during mercerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023

    Article  CAS  Google Scholar 

  • Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17:271–277

    Article  CAS  Google Scholar 

  • Abe K, Yano H (2011) Formation of hydrogels from cellulose nanofibers. Carbohydr Polym 85:733–737

    Article  CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. Chem Sus Chem 1:149–154

    CAS  Google Scholar 

  • Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydra Polym 84:40–53

    Article  CAS  Google Scholar 

  • Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Contr Release 119:5–24

    Article  CAS  Google Scholar 

  • Donaldson L (2007) Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci Technol 41:443–460

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Hagiwara Y, Ananda Putra A, Kakugo A, Furukawa H, Gon JP (2010) Ligament-like tough double-network hydrogel based on bacterial cellulose. Cellulose 17:93–101

    Article  CAS  Google Scholar 

  • Nakano T (2010) Mechanism of microfibril contraction and anisotropic dimensional changes for cells in wood treated with aqueous NaOH solution. Cellulose 17:711–719

    Article  CAS  Google Scholar 

  • Nakano T, Sugiyama J, Norimoto M (2000) Contraction force and transformation of microfibril with aqueous sodium hydroxide solution. Holzforschung 54:315–320

    Article  CAS  Google Scholar 

  • Nakayama A, Kakugo A, Gon JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double network hydrogel with bacterial cellulose. Adv Func Mater 14:1124–1128

    Article  CAS  Google Scholar 

  • Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci, Part A: Polym Chem 33:1647–1651

    CAS  Google Scholar 

  • Okano T, Sarko A (1985) Mercerization of cellulose. II. alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Saito T, Uematsu T, Kimura S, Enomaea T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7:8804–8809

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Towards a systems approach to understanding plant cell walls. Science 306:2206–2211

    Article  CAS  Google Scholar 

  • Wada M, Ike M, Tokuyasu K (2010) Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polym Degrad Stab 95:543–548

    Article  CAS  Google Scholar 

  • Wang Z, Liu S, Matsumoto Y, Kuga S (2012) Cellulose gel and aerogel from LiCl/DMSO solution. Cellulose 19:393–399

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid from the Japan Society for the Promotion of Science (11020625).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Abe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, K., Yano, H. Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19, 1907–1912 (2012). https://doi.org/10.1007/s10570-012-9784-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9784-3

Keywords

Navigation