Skip to main content
Log in

Characterization of viscose fibers modified with 6-deoxy-6-amino cellulose sulfate

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose viscose fibres were functionalized by novel amino cellulose sulfates (ACS), namely 6-deoxy-6-(ω-aminoethyl) amino cellulose-2,3(6)-O-sulfate (AECS), and 6-deoxy-6-(2-(bis-N′,N′-(2-aminoethyl)aminoethyl)) amino cellulose-2,3(6)-O-sulfate (BAECS). In this way an amphoteric characteristics were introduced onto cellulose viscose fibers which is extremely important by fiber applications. Whilst cellulose fibers possess only negligible carboxyl groups’ content, the coating of fibers by AECS and BAECS, respectively, introduces new functional groups to the fibers; as positively-charged amino groups and negatively-charged sulfate groups. The typical functional groups within the non-coated fibers, as well in the ACS-coated fibers, were characterized by means of X-ray photoelectron spectroscopy, conductometric-, potentiometric and polyelectrolyte titrations, as well as conventionally by the spectroscopic methylene-blue method. The electro-kinetic behavior was evaluated by measuring the zeta-potential of the fibers as a function of pH. The amounts of the positive-charges (introduced protonated amino groups) determined by potentiometric titration agreed with the amounts of the positive charges determined by conductometric titration. The total amounts of negatively-charged fiber groups (sulfate and carboxyl) determined by polyelectrolyte titration were 38.8 and 32.1 mMol kg−1 for AECS-Vis and BAECS-Vis, respectively, and these results were in accordance with the conventional methylene-blue method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aubay E, Fleury E, Harrison I (2006) Use of amphoteric polysaccharide for treating textile fiber articles. US7074919B2

  • Bellmann C, Caspari A, Albrecht V, Doan TTL, Mäder E, Luxbacher T, Kohl R (2005) Electrokinetic properties of natural fibres. Colloids Surf A 267(1–3):19–23. doi:10.1016/j.colsurfa.2005.06.033

    Article  CAS  Google Scholar 

  • Bhardwaj NK, Hoang V, Nguyen KL (2007) Effect of refining on pulp surface charge accessible to polydadmac and FTIR characteristic bands of high yield kraft fibres. Bioresour Technol 98(4):962–966. doi:10.1016/j.biortech.2006.03.001

    Article  CAS  Google Scholar 

  • Brumer H, Zhou Q, Baumann MJ, Carlsson K, Teeri TT (2004) Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan. J Am Chem Soc 126(18):5715–5721. doi:10.1021/ja0316770

    Article  CAS  Google Scholar 

  • Buchert J, Pere J, Johansson L-S, Campbell JM (2001) Analysis of the surface chemistry of linen and cotton fabrics. Text Res J 71(7):626–629. doi:10.1177/004051750107100710

    Article  CAS  Google Scholar 

  • Cakara D, Fras L, Bracic M, Kleinschek KS (2009) Protonation behavior of cotton fabric with irreversibly adsorbed chitosan: a potentiometric titration study. Carbohydr Polym 78:36–40. doi:10.1016/j.carbpol.2009.04.011

    Article  CAS  Google Scholar 

  • Elizer LH (1972) Textile treatment with amphoteric starch. US3676205A

  • Filpponen I, Kontturi E, Nummelin S, Rosilo H, Kolehmainen E, Ikkala O, Laine J (2012) Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential “click” reaction and adsorption. Biomacromolecules 13(3):736–742. doi:10.1021/bm201661k

    Article  CAS  Google Scholar 

  • Fras Zemljic L, Sauperl O, But I, Zabret A, Lusicky M (2011) Viscose material functionalized by chitosan as a potential treatment in gynecology. Text Res J 81(11):1183–1190. doi:10.1177/0040517510397572

    Article  Google Scholar 

  • Fras Zemljič L, Stenius P, Laine J, Stana-Kleinschek K (2008) Topochemical modification of cotton fibres with carboxymethyl cellulose. Cellulose 15(2):315–321. doi:10.1007/s10570-007-9175-3

    Article  Google Scholar 

  • Fras L, Laine J, Stenius P, Stana-Kleinschek K, Ribitsch V, Doleček V (2004) Determination of dissociable groups in natural and regenerated cellulose fibers by different titration methods. J Appl Polym Sci 92(5):3186–3195. doi:10.1002/app.20294

    Article  CAS  Google Scholar 

  • Fras L, Johansson LS, Stenius P, Laine J, Stana-Kleinschek K, Ribitsch V (2005) Analysis of the oxidation of cellulose fibres by titration and XPS. Colloids Surf A 260(1–3):101–108. doi:10.1016/j.colsurfa.2005.01.035

    Article  CAS  Google Scholar 

  • Genco T, Zemljic LF, Bracic M, Stana-Kleinschek K, Heinze T (2012) Physicochemical properties and bioactivity of a novel class of cellulosics: 6-deoxy-6-amino cellulose sulfate. Macromol Chem Phys 213:539–548. doi:10.1002/macp.201100571

    Article  CAS  Google Scholar 

  • Ghosh AK (2009) Introduction to measurements and instrumentation, 3rd edn. PHI Learning, New Delhi

    Google Scholar 

  • Heinze T, Genco T, Petzold-Welcke K, Wondraczek H (2012) Synthesis and characterization of aminocellulose sulfates as novel ampholytic polymers. Cellulose 19(4):1305–1313. doi:10.1007/s10570-012-9725-1

    Article  CAS  Google Scholar 

  • Hirshfield JJ (1964) Treatment for synthetic fiber flocks. BE637652

  • Johansson L-S (2002) Monitoring fibre surfaces with XPS in papermaking processes. Microchim Acta 138(3):217–223. doi:10.1007/s006040200025

    Article  CAS  Google Scholar 

  • Johansson L-S, Campbell J, Koljonen K, Kleen M, Buchert J (2004) On surface distributions in natural cellulosic fibres. Surf Interface Anal 36(8):706–710. doi:10.1002/sia.1741

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vol 1. Wiley, Weinheim

    Book  Google Scholar 

  • Laine J, Stenius P (1997) Effect of charge on the fiber and paper properties of bleached industrial kraft pulps. Pap Puu 79:257–266

    CAS  Google Scholar 

  • Laine J, Buchert J, Viikari L, Stenius P (1996) Characterization of unbleached kraft pulps by enzymic treatment, potentiometric titration and polyelectrolyte adsorption. Holzforschung 50:208–214. doi:10.1515/hfsg.1996.50.3.208

    Article  CAS  Google Scholar 

  • Myllytie P, Salmi J, Laine J (2009) The influence of pH on the adsorption and interaction of chitosan with cellulose. BioResources 4:1647–1662

    CAS  Google Scholar 

  • Peršin Z, Stana-Kleinschek K, Sfiligoj-Smole M, Kre T, Ribitsch V (2004) Determining the surface free energy of cellulose materials with the powder contact angle method. Text Res J 74(1):55–62. doi:10.1177/004051750407400110

    Article  Google Scholar 

  • Peršin Z, Stenius P, Stana-Kleinschek K (2011) Estimation of the surface energy of chemically and oxygen plasma-treated regenerated cellulosic fabrics using various calculation models. Text Res J 81(16):1673–1685. doi:10.1177/0040517511410110

    Article  Google Scholar 

  • Ramesh Kumar A, Teli MD (2007) Electrokinetic studies of modified cellulosic fibres. Colloids Surf A 301(1–3):462–468. doi:10.1016/j.colsurfa.2007.01.021

    Article  Google Scholar 

  • Reischl M, Stana-Kleinschek K, Ribitsch V (2006) Electrokinetic investigations of oriented cellulose polymers. Macromolecular Symposia 244(1):31–47. doi:10.1002/masy.200651203

    Article  CAS  Google Scholar 

  • Reischl M, Kostler S, Kellner G, Stana-Kleinschek K, Ribitsch V (2008) Oscillating streaming potential measurement system for macroscopic surfaces. Rev Sci Instrum 79(11):113902–113906

    Article  Google Scholar 

  • Stana-Kleinschek K, Ribitsch V (1998) Electrokinetic properties of processed cellulose fibers. Colloids Surf A 140(1–3):127–138. doi:10.1016/s0927-7757(97)00301-4

    Article  CAS  Google Scholar 

  • Stana-Kleinschek K, Kreze T, Ribitsch V, Strnad S (2001) Reactivity and electrokinetical properties of different types of regenerated cellulose fibres. Colloids Surf A 195(1–3):275–284. doi:10.1016/s0927-7757(01)00852-4

    Article  CAS  Google Scholar 

  • Stana-Kleinschek K, Ribitsch V, Kreze T, Fras L (2002) Determination of the adsorption character of cellulose fibres using surface tension and surface charge. Mater Res Innovations 6(1):13–18. doi:10.1007/s10019-002-0168-4

    Article  CAS  Google Scholar 

  • Waagberg L, Oedberg L, Glad-Nordmark G (1989) Charge determination of porous substrates by polyelectrolyte adsorption. Part 1. Carboxymethylated, bleached cellulosic fibers. Nord Pulp Pap Res J 4:71–76

    Article  CAS  Google Scholar 

  • Zemljič L, Peršin Z, Stenius P, Kleinschek K (2008) Carboxyl groups in pre-treated regenerated cellulose fibres. Cellulose 15(5):681–690. doi:10.1007/s10570-008-9216-6

    Article  Google Scholar 

  • Zhang Y, Sjogren B, Engstrand P, Htun M (1994) Determination of charged groups in mechanical pulp fibers and their influence on pulp properties. J Wood Chem Technol 14:83–102. doi:10.1080/02773819408003087

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to this work received funding from the European Community’s Seventh Framework program [FP7/2007-2013] under grant agreement no. 214015. We would like to thank Dr. Silvo Hribernik for his technical help during the Zeta potential measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidija Fras Zemljič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genco, T., Zemljič, L.F., Bračič, M. et al. Characterization of viscose fibers modified with 6-deoxy-6-amino cellulose sulfate. Cellulose 19, 2057–2067 (2012). https://doi.org/10.1007/s10570-012-9778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9778-1

Keywords

Navigation