Skip to main content

Advertisement

Log in

Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC)

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Free-standing films of bacterial cellulose (BC) and polyaniline (PAni) (BC/PAni) composites with high electrical conductivity values (0.9 S cm−1) and good mechanical properties (40 MPa) were prepared through in situ oxidative chemical polymerization of aniline (Ani) on the surface of synthesized BC nanofibers by using FeCl3·6H2O, as oxidant. The influence of polymerization conditions such as oxidant content, protonic acid, and reaction time on electrical conductivity, morphological, tensile properties and thermal stability of the BC/PAni composites was investigated. Electrical conductivities of BC/PAni composites increased with increasing reaction time due to the formation of a continuous layer that completely coated the nanofiber surface. FTIR spectra of BC/PAni composites produced with and without protonic acid exhibited overlapped absorption bands of both BC and PAni, except for quinoid and benzoid bending modes of PAni. The in situ oxidative chemical polymerization gives rise to conducting membranes with the surface constituted by different PAni content, as indicated through CHN elemental analysis. The crystalline structure of BC was not affected by the incorporation of PAni. Scanning electron microscopy analysis of the composites revealed that PAni consisted of nanoparticles around 70 nm in mean size to form a continuous coating that encapsulates the BC nanofibers. The BC/PAni composites obtained by the method described in this work have interesting properties that may find important technological applications such as sensors, electronic devices, intelligent clothes, flexible electrodes and tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barud HS, Barrios C, Regiani T, Marques R, Verelst M, Dexpertghys J, Messaddeq Y, Ribeiro S (2008) Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C-Bio S 28:549–554

    Article  Google Scholar 

  • Beneventi D, Alila S, Boufi S, Chaussy D, Nortier P (2006) Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation-pyrrole polymerization sequence. Cellulose 13:725–734

    Article  CAS  Google Scholar 

  • Chen P, Yun YS, Bak H, Cho SY, Jin HJ (2010) Multiwalled carbon nanotubes-embedded electrospun bacterial cellulose nanofibers. Mol Cryst Liq Cryst 519:169–178

    Article  CAS  Google Scholar 

  • Chronakis IS, Grapenson S, Jakob A (2006) Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer 47:1597–1603

    Article  CAS  Google Scholar 

  • Cucchi I, Boschi A, Arosio C, Bertini F, Freddi G, Catellani M (2009) Bio-based conductive composites: preparation and properties of polypyrrole (PPy)-coated silk fabrics. Synth Met 159:246–253

    Article  CAS  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145–151

    Article  CAS  Google Scholar 

  • Grande CJ, Torres FG, Gomez CM, Bano MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615

    Article  CAS  Google Scholar 

  • Hosny WM, Basta AH, El-Saied H (1997) Metal Chelates with some cellulose derivatives: V. Synthesis and characterization of some Iron (III) complexes with cellulose ethers. Polym Int 42:157–162

    Article  CAS  Google Scholar 

  • Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8457

    Article  CAS  Google Scholar 

  • Johnston JH, Moraes J, Borrmann T (2005) Conducting polymers on paper fibres. Synth Met 153:65–68

    Article  CAS  Google Scholar 

  • Kamalesh S, Tan P, Wang J, Lee T, Kang ET, Wang CH (2000) Biocompatibility of electroactive polymers in tissues. J Biomed Mater Res 52:467–478

    Article  CAS  Google Scholar 

  • Kelly FM, Johnston JH, Borrmann T, Richardson MJ (2007) Functionalized hybrid materials of conducting polymers with individual fibres of cellulose. Eur J Inorg Chem 35:5571–5577

    Article  Google Scholar 

  • Lee HS, Hong J (2000) Chemical synthesis and characterization of polypyrrole coated on porous membranes and its electrochemical stability. Synth Met 113:115–119

    Article  Google Scholar 

  • Lee B-H, Kim H-J, Yang H-S (2012) Polymerization of aniline on bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films. Curr Appl Phys 12:75–80

    Article  Google Scholar 

  • Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715

    Article  CAS  Google Scholar 

  • Liu Y, Liu X, Chen J, Gilmore KJ, Wallace GG (2008) 3D Bio-nanofibrous PPy/SIBS mats as platforms for cell culturing. Chem Commun 32:3729–3731

    Article  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  CAS  Google Scholar 

  • Marins JA, Soares BG, Dahmouche K, Ribeiro SJL, Barud H, Bonemer D (2011) Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18:1285–1294

    Article  CAS  Google Scholar 

  • Müller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111

    Article  Google Scholar 

  • Picciani PHS, Medeiros ES, Pan ZL, Orts WJ, Mattoso LHC, Soares BG (2009) Development of conducting polyaniline/poly(lactic acid) nanofibers by electrospinning. J Appl Polym Sci 112:744–753

    Article  CAS  Google Scholar 

  • Raghavendra SC, Khasim S, Revanasiddappa M, Ambika Prasad MVN, Kulkarni AB (2003) Synthesis, characterization and low frequency a.c. conduction of polyaniline/fly ash composites. Bull Mater Sci 26:733–739

    Article  CAS  Google Scholar 

  • Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antônio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng, C 28:549–554

    Article  CAS  Google Scholar 

  • Recouvreux DOS, Rambo CR, Berti FV, Carminatti CA, Antônio RV, Porto LM (2011) Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration. Mater Sci Eng, C 31:151–157

    Article  CAS  Google Scholar 

  • Santa Maria LC, Santos ALC, Oliveira PC, Barud HS, Messaddeq Y, Ribeiro SJL (2009) Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose. Mater Lett 63:797–799

    Article  Google Scholar 

  • Sasso C, Zeno E, Petit-Conil M, Chaussy D, Belgacem MN, Tapin-Lingua S, Beneventi D (2010a) Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromol Mater Eng 295:934–941

    Article  CAS  Google Scholar 

  • Sasso C, Beneventi D, Zeno E, Chaussy D, Conil MP-, Nortier P, Belgacem N (2010b) Polypyrrole synthesis via carboxylcellulose-Iron complexes. Bioresources 5(4):2348–2361

    CAS  Google Scholar 

  • Watanabe K, Tabuchi M (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200

    Article  CAS  Google Scholar 

  • Yan ZY, Chen SY, Wang HP, Wang B, Wang CS, Jiang JM (2008) Cellulose synthesized by Acetobacter xylinum in the presence of multi-walled carbon nanotubes. Carbohydr Res 343:73–80

    Article  CAS  Google Scholar 

  • Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284

    Article  CAS  Google Scholar 

  • Yun S, Kim J (2006) Multiwalled-carbon nanotubes and polyaniline coating on electro-active paper for bending actuator. J Phys D Appl Phys 39:2580–2586

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior—CAPES, and Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina—FAPESC. We are sincerely thankful to Central Electronic Microscopy Laboratory, Santa Catarina Federal University (LCME-UFSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. O. Barra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, D., Mandelli, J.S., Marins, J.A. et al. Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19, 1645–1654 (2012). https://doi.org/10.1007/s10570-012-9754-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9754-9

Keywords

Navigation