Skip to main content
Log in

Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This study reports the production of cellulose nanofibrils (CNF) from a bleached eucalyptus pulp using a commercial stone grinder. Scanning electronic microscopy and transmission electronic microscopy imaging were used to reveal morphological development of CNF at micro and nano scales, respectively. Two major structures were identified: (1) highly kinked, naturally helical, and untwisted fibrils that serve as backbones of CNF networks, and (2) entangled, less distinctively kinked (or curled) and twisted “soft looking” nanofibrils. These two major structures appeared in different features of CNF network such as “trees”, “net”, “flower”, single fibril, etc. Prolonged fibrillation can break the nanofibrils into nanowhiskers from the untwisted fibrils with high crystallinity. Energy input for mechanical fibrillation is on the order of 5–30 kWh/kg. The gradual reduction in network size of CNF with time may be used to fractionate CNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17(4):721–733

    Article  CAS  Google Scholar 

  • Bai W, Holbery J, Li K (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16(3):455–465

    Article  CAS  Google Scholar 

  • Dekker J (2003) New insights in beating leading to innovative beating techniques. 7th PIRA International Refining Conference, Stockholm, Sweden

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • Franson MH (1985) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association (APHA), Washington, DC, pp 532–537

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Hartman RR (1985) Mechanical treatment of pulp fibers for paper property development. In: Punton V (ed) Mechanical Engineering Publications Limited, Oxford, England, pp 413–442

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino TD (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89:461–466

    Article  CAS  Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9(3):1022–1026

    Article  CAS  Google Scholar 

  • Kerekes RJ (2005) Characterizing refining actions: linking the process to refining results. 8th PIRA International Refining Conference, Barcelona, Spain

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Law KN, Lo SN, Valade JL (1985) Beating behavior of sulphite-mechanical hardwood pulps. Pulp Paper Canada 86(1):70–74

    CAS  Google Scholar 

  • Marton R, Goff S, Brown AF, Granzow S (1979) Hardwood TMP and RMP modifications. TAPPI 62(1):49–53

    CAS  Google Scholar 

  • Mazumder BB, Ohtani Y, Cheng Z, Sameshima K (2000) Combination treatment of kenaf bast fiber for high viscosity pulp. J Wood Sci 46(5):364–370

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A Mater Sci Process 78:547–552

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  Google Scholar 

  • Panshin AJ, de Zeeuw C (1980) Textbook of wood technology. McGraw-Hill Book Company, New York

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10(7):1992–1996

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119(5):2652–2660

    Article  Google Scholar 

  • Stamm AJ (1964) Wood and cellulose science. The Ronald Press Company, New York, p 549

    Google Scholar 

  • Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48(24):11211–11219

    Article  CAS  Google Scholar 

  • Tejado A, Alam MN, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19(3):831–842

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polymer Sci; Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Uetani K, Yano H (2011) Nanofibrillation of wood pulp using a high-speed blender. Biomacromolecules 12(2):348–353

    Article  CAS  Google Scholar 

  • Wegner TH, Jones EP (2009) A fundamental review of the relationships between nanotechnology and lignocellulosic biomass. In: Lucia LA, Rojas OJ (eds) The nanoscience and technology of renewable biomaterials, 1 st edn. Wiley, New Jersey, pp 1–41

  • Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13(5):1339

    Article  CAS  Google Scholar 

  • Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial supports by a USDA Agriculture and Food Research Initiative (AFRI) Competitive Grant (No. 2011-67009-20056) and Chinese Scholarship Council (CSC). The funding from these two programs made the visiting appointment of Wang at the USDA Forest Products Laboratory (FPL) possible. We also acknowledge Ann Masco of FPLL Paper Test Lab for FQA analysis. The authors also wish to thank Anne Kamata, SAIC-Frederick, Inc. for electron microscopy imaging. TEM imaging work was funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Zhu.

Additional information

This work was conducted on official government time of Zhu, Gleisner, and Kuster. Wang was a visiting student at the USDA Forest Service, Forest Products Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q.Q., Zhu, J.Y., Gleisner, R. et al. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19, 1631–1643 (2012). https://doi.org/10.1007/s10570-012-9745-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9745-x

Keywords

Navigation