Skip to main content
Log in

Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Electrospinning of cellulose acetate (CA) was studied in relation to factors of solvent composition, polymer concentration, and flow rate to elucidate how the processing parameters impact electrospun CA structure. Fibrous cellulose-based mats were produced from electrospinning cellulose acetate (CA, Mn = 30,000, DS = 2.45) in acetone, acetone/isopropanol (2:1), and acetone/dimethylacetamide (DMAc) (2:1) solutions. The effect of CA concentration and flow rate was evaluated in acetone/DMAc (2:1) solution. The morphology of electrospun CA mats was impacted by solvent system, polymer concentration, and solution flow rate. Fibers produced from acetone and the mixture of acetone/isopropanol (2:1) exhibited a ribbon structure, while acetone/DMAc (2:1) system produced the common cylindrical fiber shape. It was determined that the electrospinning of 17 % CA solution in acetone/DMAc (2:1, w/w) produced fibers with an average fiber diameter in the submicron range and the lowest size distribution among the solvents tested. The solution flow rate had a power law relationship of 0.26 with the CA fiber size for 17 % CA in acetone/DMAc (2:1). Solvent composition and flow rate also impacted the stability of the network structure of the electrospun fibers. Only samples from acetone/DMAc (2:1) at solution flow rates equal or higher than 1 mL/h produced fibrous meshes that were able to preserve their original network structure after deacetylation. These samples after regeneration showed no residual DMAc and exhibited no cytotoxic effects on mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andrady AL (2007) Factors affecting nanofiber quality. In: Science and technology of polymer nanofibers. Wiley, pp 81–110. doi:10.1002/9780470229842.ch4

  • Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70(5):703–718. doi:10.1016/j.compscitech.2010.01.010

    Article  CAS  Google Scholar 

  • Cui W, Li X, Zhu X, Yu G, Zhou S, Weng J (2006) Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules 7(5):1623–1629. doi:10.1021/bm060057z

    Article  CAS  Google Scholar 

  • Dugan JM, Gough JE, Eichhorn SJ (2010) Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 11(9):2498–2504. doi:10.1021/bm100684k

    Article  CAS  Google Scholar 

  • Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592. doi:10.1016/s0032-3861(99)00068-3

    Article  CAS  Google Scholar 

  • Freire MG, Teles ARR, Ferreira RAS, Carlos LD, Lopes-da-Silva JA, Coutinho JAP (2011) Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chem 13(11):3173–3180. doi:10.1039/c1gc15930e

    Article  CAS  Google Scholar 

  • Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48(2):378–391. doi:10.1080/15583720802022281

    Article  CAS  Google Scholar 

  • Han D, Gouma P-I (2006) Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomed Nanotechnol Biol Med 2(1):37–41. doi:10.1016/j.nano.2006.01.002

    Article  CAS  Google Scholar 

  • Han SO, Son WK, Youk JH, Lee TS, Park WH (2005) Ultrafine porous fibers electrospun from cellulose triacetate. Mater Lett 59(24–25):2998–3001. doi:10.1016/j.matlet.2005.05.003

    Article  CAS  Google Scholar 

  • Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: effects of solvent composition on the fiber diameter. Mater Lett 62(4–5):759–762

    Article  CAS  Google Scholar 

  • Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res, Part A 76A(2):431–438. doi:10.1002/jbm.a.30570

    Article  CAS  Google Scholar 

  • Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253. doi:10.1016/s0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  • Kim C-W, Frey MW, Marquez M, Joo YL (2005) Preparation of submicron-scale, electrospun cellulose fibers via direct dissolution. J Polym Sci, Part B: Polym Phys 43(13):1673–1683. doi:10.1002/polb.20475

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Koombhongse S, Liu W, Reneker DH (2001) Flat polymer ribbons and other shapes by electrospinning. J Polym Sci Part B 39(21):2598–2606. doi:10.1002/polb.10015

    Article  CAS  Google Scholar 

  • Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621. doi:10.1002/jbm.10167

    Article  CAS  Google Scholar 

  • Lim YC, Johnson J, Fei Z, Wu Y, Farson DF, Lannutti JJ, Choi HW, Lee LJ (2011) Micropatterning and characterization of electrospun poly(ε-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Biotechnol Bioeng 108(1):116–126. doi:10.1002/bit.22914

    Article  CAS  Google Scholar 

  • Liu H, Hsieh Y-L (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B 40(18):2119–2129. doi:10.1002/polb.10261

    Article  CAS  Google Scholar 

  • Liu H, Tang C (2006) Electrospinning of cellulose acetate in solvent mixture N,N-dimethylacetamide (DMAc)/acetone. Polym J 39(1):65–72

    Article  CAS  Google Scholar 

  • Ma Z, Ramakrishna S (2008) Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J Membrane Sci 319(1–2):23–28

    Article  CAS  Google Scholar 

  • Ma Z, Kotaki M, Ramakrishna S (2005) Electrospun cellulose nanofiber as affinity membrane. J Membrane Sci 265(1–2):115–123. doi:10.1016/j.memsci.2005.04.044

    Article  CAS  Google Scholar 

  • McCullen SD, Miller PR, Gittard SD, Gorga RE, Pourdeyhimi B, Narayan RJ, Loboa EG (2010) In situ collagen polymerization of layered cell-seeded electrospun scaffolds for bone tissue engineering applications. Tissue Engin Part C 16(5):1095–1105. doi:10.1089/ten.tec.2009.0753

    Article  CAS  Google Scholar 

  • Miyamoto T, Takahashi S-i, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23(1):125–133

    Article  CAS  Google Scholar 

  • Munir MM, Suryamas AB, Iskandar F, Okuyama K (2009) Scaling law on particle-to-fiber formation during electrospinning. Polymer 50(20):4935–4943

    Article  CAS  Google Scholar 

  • Phachamud T, Phiriyawirut M (2011) In vitro cytotoxicity and degradability tests of gallic acid-loaded cellulose acetate electrospun fiber. Res J Pharm, Biol Chem Sci 2(3):85–98

    CAS  Google Scholar 

  • Quan S-L, Kang S-G, Chin I-J (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose (Dordrecht, Neth) 17(2):223–230. doi:10.1007/s10570-009-9386-x

    CAS  Google Scholar 

  • Rebollar E, Cordero D, Martins A, Chiussi S, Reis RL, Neves NM, León B (2011) Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation. Appl Surf Sci 257(9):4091–4095. doi:10.1016/j.apsusc.2010.12.002

    Article  CAS  Google Scholar 

  • Rodriguez K, Renneckar S, Gatenholm P (2011) Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl Mater Interfaces 3(3):681–689. doi:10.1021/am100972r

    Article  CAS  Google Scholar 

  • Son WK, Youk JH, Lee TS, Park WH (2004) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polymer Sci Part B 42(1):5–11. doi:10.1002/polb.10668

    Article  CAS  Google Scholar 

  • Song J, Birbach NL, Hinestroza JP (2012) Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 19(2):411–424

    Article  CAS  Google Scholar 

  • Supaphol P, Neamnark A, Taepaiboon P, Pavasant P (2012) Effect of degree of acetylation on in vitro biocompatibility of electrospun cellulose acetate-based fibrous matrices. Chiang Mai J Sci 39(2):209–223

    Google Scholar 

  • Suwantong O, Ruktanonchai U, Supaphol P (2010) In vitro biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin. J Biomed Mater Res 94A(4):1216–1225. doi:10.1002/jbm.a.32797

    CAS  Google Scholar 

  • Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23):6913–6922

    Article  CAS  Google Scholar 

  • Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14(6):563–575

    Article  CAS  Google Scholar 

  • Veleirinho B, Rei MF, Lopes-Da-Silva JA (2008) Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats. J Polym Sci Part B 46(5):460–471. doi:10.1002/polb.21380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the USDA-NIFA grant number 2010-65504-20429, Wallenberg Wood Science Center of Sweden, and the Institute of Critical Science and Applied Science of Virginia Tech. Additionally, the authors wish to thank Patricia Renneckar for assisting with the editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Renneckar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, K., Gatenholm, P. & Renneckar, S. Electrospinning cellulosic nanofibers for biomedical applications: structure and in vitro biocompatibility. Cellulose 19, 1583–1598 (2012). https://doi.org/10.1007/s10570-012-9734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9734-0

Keywords

Navigation