Skip to main content
Log in

Cellulose II nanoelements prepared from fully mercerized, partially mercerized and regenerated celluloses by 4-acetamido-TEMPO/NaClO/NaClO2 oxidation

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A softwood bleached kraft pulp (SBKP) and cotton lint cellulose were fully or partially mercerized, and these along with celluloses and commercially available regenerated cellulose fiber and beads were oxidized by 4-acetamido-TEMPO/NaClO/NaClO2 at 60 °C and pH 4.8. Weight recovery ratios and carboxylate contents of the oxidized celluloses were 65–80% and 1.8–2.2 mmol g−1, respectively. Transparent and viscous dispersions were obtained by mechanical disintegration of the TEMPO-oxidized celluloses in water. These aqueous dispersions showed birefringence between cross-polarizers, indicating that mostly individualized cellulose nanoelements dispersed in water were obtained by these procedures. Transmission electron microscopy observation showed that the cellulose nanoelements prepared from mercerized SBKP, repeatedly mercerized SBKP, mercerized cotton lint cellulose, regenerated cellulose beads and 18% NaOH-treated SBKP, i.e. partially mercerized SBKP, had similar morphologies and sizes, 4–12 nm in width and 100–200 nm in length. The 18% NaOH-treated SBKP was converted to cellulose nanoelements consisting of both celluloses I and II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  CAS  Google Scholar 

  • De Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  Google Scholar 

  • Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Hirota M, Tamura N, Saito T, Isogai A (2009a) Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions. Carbohydr Polym 78:330–335

    Article  CAS  Google Scholar 

  • Hirota M, Tamura N, Saito T, Isogai A (2009b) Surface carboxylation of porous regenerated cellulose beads by 4-acetamido-TEMPO/NaClO/NaClO2 system. Cellulose 16:841–851

    Article  CAS  Google Scholar 

  • Hirota M, Furihata K, Saito T, Kawada T, Isogai A (2010a) Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling. Angew Chem Int Ed 122:7836–7838

    Article  Google Scholar 

  • Hirota M, Tamura N, Saito T, Isogai A (2010b) Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8. Cellulose 17:279–288

    Article  CAS  Google Scholar 

  • Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5:153–164

    Article  CAS  Google Scholar 

  • Isogai T, Yanagisawa M, Isogai A (2008) Degrees of polymerization (DP) and DP distribution of dilute acid-hydrolyzed products of alkali-treated native and regenerated celluloses. Cellulose 15:815–823

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416

    Article  CAS  Google Scholar 

  • Manjunath BR, Venkataraman A (1980) Fibrillar aggregation in cotton cellulose subjected to multiple swelling treatments with alkali. J Polym Sci Polym Chem Ed 18:1407–1424

    Article  CAS  Google Scholar 

  • Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633

    Article  CAS  Google Scholar 

  • Nelson ML, Tripp VW (1953) Determination of the leveling-off degree of polymerization of cotton and rayon. J Polym Sci 10:577–586

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017

    Article  CAS  Google Scholar 

  • Okita Y, Saito T (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2492–2496

    Article  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Isogai A (2010) Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: effect of the oxidation conditions on carboxylate content and degree of polymerization. J Wood Sci 56:227–232

    Article  CAS  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Shibata I, Isogai A (2003) Depolymerization of cellouronic acid during TEMPO-mediated oxidation. Cellulose 10:151–158

    Article  CAS  Google Scholar 

  • Zuluaga R, Putaux JL, Cruz J, Vélez J, Mondragon I, Gañán P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76:51–59

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by Grants-in-Aid for Scientific Research S (Grant number 21228007) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirota, M., Tamura, N., Saito, T. et al. Cellulose II nanoelements prepared from fully mercerized, partially mercerized and regenerated celluloses by 4-acetamido-TEMPO/NaClO/NaClO2 oxidation. Cellulose 19, 435–442 (2012). https://doi.org/10.1007/s10570-011-9642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9642-8

Keywords

Navigation