Skip to main content
Log in

Investigating adsorption of bovine serum albumin on cellulosic substrates using magnetic resonance imaging

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulosic biomass is recalcitrant to enzymatic hydrolysis which greatly reduces the efficiency of biofuels production. Specifically, the lignin component of biomass is thought to provide non-productive binding sites for glycosyl hydrolases, effectively disabling the enzymes from completing further digestion. A thorough understanding of the adsorption rates of protein molecules on celluloses—especially lignocelluloses—is crucial to improving the cyclic steps of adsorption, diffusion, and reaction. We use magnetic resonance imaging (MRI) to detect concentrations of bovine serum albumin (BSA) in equilibrium with various cellulose substrates, including delignified and acid-treated lignocellulosic substrates. BSA is believed to be an effective adsorption blocker during enzymatic hydrolysis of lignocellulosics, and has been correlated with an increase in reaction yield. We found BSA to have little adsorption onto the chosen cellulose substrates in the low concentration range studied. Ultraviolet (UV) absorption measurements of reaction supernatants at 280 nm were used to confirm the MRI results for each of the substrate types. The advantages of the MRI technique are compared with that of the traditional UV measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andric P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 28:308–324

    Article  CAS  Google Scholar 

  • Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase kinetics on lignocellulose substrates. Biotechnol Adv 27:833–848

    Article  CAS  Google Scholar 

  • Brennan MA, Wyman CE (2004) Initial evaluation of simple mass transfer models to describe hemicellulose hydrolysis in corn stover. Appl Biochem Biotechnol 113(1–3):965–976

    Article  Google Scholar 

  • Chrastil J (1988) Enzymic product formation curves with the normal or diffusion limited reaction mechanism and in the presence of substrate receptors. Int J Biochem 20(7):683–693

    Article  CAS  Google Scholar 

  • Crank J (2002) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  • Cussler EL (1997) Diffusion: mass transfer in fluid systems, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Echols GH, Anderegg JW (1960) An X-ray scattering investigation of the urea denaturation of bovine serum albumin. J Am Chem Soc 82(19):5085–5093

    Article  CAS  Google Scholar 

  • Ehrhardt MR, Monz TO, Root TW, Connelly RK, Scott CT, Klingenberg DJ (2010) Rheology of dilute acid hydrolyzed corn stover at high solids concentration. Appl Biochem Biotechnol 160(4):1102–1115

    Article  CAS  Google Scholar 

  • Elander RT, Dale BE, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN, Wyman CE (2009) Summary of findings from the biomass refining consortium for applied fundamentals and innovation (CAFI): corn stover pretreatment. Cellulose 16(4):649–659

    Article  CAS  Google Scholar 

  • Epstein N (1989) On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem Eng Sci 44(3):777–779

    Article  CAS  Google Scholar 

  • Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31(3):353–364

    Article  CAS  Google Scholar 

  • Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJM, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278(34):31,988–31,997

    Article  Google Scholar 

  • Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. Adv Biochem Engin/Biotechnol 108:303–327

    Article  CAS  Google Scholar 

  • Hames B, Ruiz R, Scarlata C, Sluiter A, Sluiter J, Templeton DW (2005) Preparation of samples for compositional analysis. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10(4):358–364

    Article  CAS  Google Scholar 

  • Ingle JDJ, Crouch SR (1988) Spectrochemical analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Kawamoto H, Nakatsubo F, Murakami K (1992) Protein-adsorbing capacities of lignin samples. Mokuzai Gakkaishi 38(1):81–84

    CAS  Google Scholar 

  • Kosto KB, Deen WM (2004) Diffusivities of macromolecules in composite hydrogels. AIChE J 50:2648–2658

    Article  CAS  Google Scholar 

  • Kristensen JB, Felby C, Jorgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2(1):11

    Article  Google Scholar 

  • Kumar R, Wyman CE (2009) Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol Bioeng 103:252–267

    Article  CAS  Google Scholar 

  • Meunier-Goddik L, Penner MH (1999) Enzyme catalyzed saccharification of model celluloses in the presence of lignacious residues. J Agric Food Chem 47:346–351

    Article  CAS  Google Scholar 

  • Mohagheghi A, Tucker M, Grohmann K, Wyman C (1992) High solids simultaneous saccharification and fermentation of pretreated wheat straw to ethanol. Appl Biochem Biotechnol 33(2):67–81

    Article  CAS  Google Scholar 

  • Neale GH, Nader WK (1973) Prediction of transport processes with porous media: diffusive flow processes within an homogeneous swarm of spherical particles. AIChE J 19:112–119

    Article  CAS  Google Scholar 

  • Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4(11):2411–2423

    Article  CAS  Google Scholar 

  • Pakzad L, Ein-Mozafari F, Chan P (2008) Using computational fluid dynamics modeling to study the mixing of pseudoplastic fluids with a scaba 6SRGT impeller. Chem Eng Process 47:2218–2227

    Article  CAS  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBHI and EGII and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72

    Article  CAS  Google Scholar 

  • Philippidis GP, Smith TK, Wyman CE (1993) Study of the enzymatic hydrolysis of cellulose for the production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol Bioeng 41(9):846–853

    Article  CAS  Google Scholar 

  • Reese ET, Ryu DY (1980) Shear inactivation of cellulase of Trichoderma reesei. Enzym Microb Technol 2:239–240

    Article  CAS  Google Scholar 

  • Roberts KM, Lavenson DM, Tozzi EJ, McCarthy MJ, Jeoh T (2011) The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose 18(3):759–773

    Article  CAS  Google Scholar 

  • Roche CM, Dibble CJ, Knutsen JS, Stickel JJ, Liberatore MW (2009) Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnol Bioeng 104(2):290–300

    Article  CAS  Google Scholar 

  • Rosgaard L, Pedersen S, Langston J, Akerhielm D, Cherry JR, Meyer AS (2007) Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Prog 23:1270–1276

    Article  CAS  Google Scholar 

  • Saeed S, Ein-Mozaffari F, Upreti SR (2008) Using computational fluid dynamics to study the dynamic behavior of the continuous mixing of Herschel-Bulkley fluids. Ind Eng Chem Res 47(19):7465–7475

    Article  CAS  Google Scholar 

  • Selig M, Weiss N, Ji Y (2008) Enzymatic saccharification of lignocellulosic biomass: laboratory analytical procedure. National Renewable Energy Laboratory Techincal Report:TP–510–42,629, Mar

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton DW, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Stickel JJ, Knutsen JS, Liberatore MW, Luu W, Bousfield DW, Klingenberg DJ, Scott CT, Root TW, Ehrhardt MR, Monz TO (2009) Rheology measurements of a biomass slurry: an inter-laboratory study. Rheol Acta 48:1005–1015

    Article  CAS  Google Scholar 

  • Tozzi EJ, Lavenson DM, McCarthy MJ, Powell RL (2011) Magnetic resonance imaging to measure spatially resolved concentration profiles of solutes diffusing in stagnant beds of cellulosic fibers. AIChE J. doi:10.1002/aic.12578

  • Tyn MT, Gusek TW (1990) Prediction of diffusion coefficients of proteins. Biotechnol Bioeng 35:327–338

    Article  CAS  Google Scholar 

  • Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Bioref 2:553–588

    Article  CAS  Google Scholar 

  • Varga E, Klinke HB, Reczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88(5):567–574

    Article  CAS  Google Scholar 

  • Viamajala S, McMillan JD, Schell DJ, Elander RT (2009) Rheology of corn stover slurries at high solids concetrations—effects of saccharification and particle size. Bioresour Technol 100:925–934

    Article  CAS  Google Scholar 

  • Weisz PB (1967) Sorption-diffusion in heterogeneous systems. Part 1—general sorption behaviour and criteria. Trans Faraday Soc 63:1801–1806

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94(4):611–617

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Fiber length measurements were provided by Tom Lindström from Innventia AB, Stockholm, Sweden. The pretreated corn stover, along with the pretreatment details, was provided by Clare Dibble at the National Renewable Energy Laboratory in Golden, Colorado. Compositional analyses were conducted by Nardrapee Karuna at UC Davis. Partial financial support provided by the Center for Process Analysis and Control, University of Washington, Seattle, Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Jeoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavenson, D.M., Tozzi, E.J., McCarthy, M.J. et al. Investigating adsorption of bovine serum albumin on cellulosic substrates using magnetic resonance imaging. Cellulose 18, 1543–1554 (2011). https://doi.org/10.1007/s10570-011-9588-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9588-x

Keywords

Navigation