Skip to main content
Log in

Selection and trajectory design to mission secondary targets

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Recently, with new trajectory design techniques and use of low-thrust propulsion systems, missions have become more efficient and cheaper with respect to propellant. As a way to increase the mission’s value and scientific return, secondary targets close to the main trajectory are often added with a small change in the transfer trajectory. As a result of their large number, importance and facility to perform a flyby, asteroids are commonly used as such targets. This work uses the Primer Vector theory to define the direction and magnitude of the thrust for a minimum fuel consumption problem. The design of a low-thrust trajectory with a midcourse asteroid flyby is not only challenging for the low-thrust problem solution, but also with respect to the selection of a target and its flyby point. Currently more than 700,000 minor bodies have been identified, which generates a very large number of possible flyby points. This work uses a combination of reachability, reference orbit, and linear theory to select appropriate candidates, drastically reducing the simulation time, to be later included in the main trajectory and optimized. Two test cases are presented using the aforementioned selection process and optimization to add and design a secondary flyby to a mission with the primary objective of 3200 Phaethon flyby and 25143 Itokawa rendezvous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bryson Jr., A.E., Ho, Y.-C.: Applied Optimal Control: Optimization, Estimation and Control. Revised Edition. CRC Press, New York (1975)

    Google Scholar 

  • Campagnola, S., Russell, R.P.: Optimal control on gauss’ equations. 2nd IAA Conference on Dynamics and Control of Space Systems, March, Rome, Italy, IAA-AAS-DyCoSS2-14-14-01, IAA Academie Internationale d’Astronautique (2014)

  • Campagnola, S.: Linear reachability theory. ISAS/JAXA Internal Note, Institute of Space and Astronautical Science, Sagamihara, Japan, May (2015)

  • Campagnola, S.: Simple Fast Algorithm for Low-Thrust Guidance Problems. ISAS/JAXA Internal Note. Institute of Space and Astronautical Science, Sagamihara, Japan, December (2014)

  • Casalino, L., Colasurdo, G., Pastrone, D.: Optimal low-thrust escape trajectories using gravity assist. J. Guid. Control Dyn. 22(5), 637–642 (1999). doi:10.2514/2.4451

    Article  ADS  Google Scholar 

  • Colasurdo, G., Casalino, L.: Optimal control law for interplanetary trajectories with nonideal solar sail. J. Spacecr. Rockets 40(2), 260–265 (2003). doi:10.2514/2.3941

    Article  ADS  Google Scholar 

  • Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002). doi:10.1137/S1052623499350013

    Article  MathSciNet  MATH  Google Scholar 

  • HAYABUSA Project.: HAYABUSA Project—Science and Data Archive, Data Archives and Transmission System DARTS. Online Source: http://darts.isas.jaxa.jp/planet/project/hayabusa/ (2015). Accessed 30 Sept 2015

  • Jezewski, D.J., Faust, N.L.: Inequality constraints in primer-optimal, N-impulse solutions. AIAA J. 9(4), 760–763 (1971). doi:10.2514/3.6272

    Article  ADS  Google Scholar 

  • Jezewski, D.J., Rozendaal, H.L.: An efficient method for calculating optimal free-space N-impulsive trajectories. AIAA J. 6(11), 2160–2165 (1968). doi:10.2514/3.4949

    Article  ADS  MATH  Google Scholar 

  • Kawakatsu, Y., Itawa, T.: DESTINY mission overview: a small satellite mission for deep space exploration technology demonstration. The 13th International Space Conference of Pacific-Basin Societies, May, Kyoto, Japan, Vol. 146, American Astronautical Society (2012)

  • Kirk, D.E.: Optimal Control Theory: An Introduction. Dover, New York (2004)

    Google Scholar 

  • Kluever, C.A., Pierson, B.L.: Optimal low-thrust three-dimensional Earth–Moon trajectories. J. Guid. Control Dyn. 18(4), 830–837 (1995). doi:10.2514/3.21466

    Article  ADS  Google Scholar 

  • Lantoine, G., Russell, R.P., Dargent, T.: Using multicomplex variables for automatic computation of high-order derivatives. ACM Trans. Math. Softw. 38(3), 21 (2012). doi:10.1145/2168773.2168774

  • Lawden, D.F.: Optimal Trajectories for Space Navigation, pp. 5–59. Butterworths, London (1963)

  • Lion, P.M., Handelsman, M.: Primer vector on fixed-time impulsive trajectories. AIAA J. 6(1), 127–132 (1968). doi:10.2514/3.4452

  • Martins, J.R., Sturdza, P., Alonso, J.J.: The complex-step derivative approximation. ACM Trans. Math. Softw. 29(3), 245–262 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • McConaghy, T.T., Debban, T.J., Petropoulos, A.E., Longuski, J.M.: Design and optimization of low-thrust trajectories with gravity assists. J. Spacecr. Rockets 40(3), 380–387 (2003)

    Article  ADS  Google Scholar 

  • Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press, London (1987)

    MATH  Google Scholar 

  • Petropoulos, A.E., Russell, R.P.: Low-thrust transfers using primer vector theory and a second-order penalty method. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August, Honolulu, Hawaii, AIAA 2008-6955, American Institute of Aeronautics and Astronautics (2008)

  • Press, W.H., Teukolsky, S., Vetterling, W.T., Flannery, B.P.: Numerical Recipies in C. The Art of Scientific Computing. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  • Ranieri, C.L., Ocampo, C.A.: Optimization of round-trip, time-constrained, finite-burn trajectories via and indirect method. J. Guid. Control Dyn. 28(2), 306–314 (2005). doi:10.2514/1.5540

    Article  ADS  Google Scholar 

  • Ranieri, C.L., Ocampo, C.A.: Indirect optimization of spiral trajectories. J. Guid. Control Dyn. 29(6), 1360–1366 (2006). doi:10.2514/1.19539

    Article  ADS  Google Scholar 

  • Restrepo, R.L., Russell, R.: The shadow trajectory model for a fast low-thrust indirect optimization. 26th AAS/AIAA Space Flight Mechanics Meeting, February, Napa, California, AAS 16-523, American Astronautical Society (2016)

  • Russell, R.P.: Primer vector theory applied to global low-thrust trade studies. J. Guid. Control Dyn. 30(2), 460–472 (2007). doi:10.2514/1.22984

    Article  ADS  Google Scholar 

  • Sarli, B.V., Kawakatsu, Y., Arai, T.: Design of a multiple flyby mission to the Phaethon Geminid Complex. J. Spacecr. Rockets 52(3), 739–745 (2015a). doi:10.2514/1.A33130

  • Sarli, B.V., Kawakatsu, Y.: Orbit transfer optimization for asteroid missions using weighted cost function. J. Guid. Control Dyn. 38(7), 1241–1250 (2015b). doi:10.2514/1.G000359

  • Senent, J., Ocampo, C., Capella, A.: Low-thrust variable specific impulse transfers and guidance to unstable periodic orbits. J. Guid. Control Dyn. 28(2), 280–290 (2005). doi:10.2514/1.6398

    Article  ADS  Google Scholar 

  • Sims, J.A., Finlayson, P.A., Rinderle, E.A., Vavrina, M.A., Kowalkowski, T.D.: Implementation of a Low-Thrust Trajectory Optimization Algorithm for Preliminary Design, AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August, Keystone, Colorado, AIAA 2006-6746, American Institute of Aeronautics and Astronautics (2006)

  • The Minor Planet Center: MPC, Minor Planet Center Orbit Database (MPCORB): The International Astronomical Union, October (2013). http://www.minorplanetcenter.org/iau/MPCORB/MPCORB.DAT (2013). Accessed 12 Oct 2013

  • Vadali, S.R., Nah, R., Braden, E., Johnson, I.L.: Using low-thrust exhaust-modulated propulsion fuel-optimal planar Earth–Mars trajectories. J. Guid. Control Dyn. 23(3), 476–482 (2000). doi:10.2514/2.4553

    Article  ADS  Google Scholar 

  • Yam, C.H., Kawakatsu, Y.: GALLOP: A low-thrust trajectory optimization tool for preliminary and high fidelity mission design. 30th International Symposium on Space Technology and Science, July, ISTS 2015-d-49. Kobe, Japan (2015)

  • Zhang, C., Topputo, F., Bernelli-Zazzera, F., Zhao, Y.-S.: Low-thrust minimum-fuel optimization in the circular restricted three-body problem. J. Guid. Control Dyn. 38(8), 1501–1510 (2015). doi:10.2514/1.G001080

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Stefano Campagnola for his valuable inputs and comments during the course of this work and Jack Yeh for revising the text and providing comments on its improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Victorino Sarli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 51 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Victorino Sarli, B., Kawakatsu, Y. Selection and trajectory design to mission secondary targets. Celest Mech Dyn Astr 127, 233–258 (2017). https://doi.org/10.1007/s10569-016-9724-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-016-9724-x

Keywords

Navigation