Skip to main content
Log in

Improved initialization conditions and single impulsive maneuvers for \(\hbox {J}_{2}\)-invariant relative orbits

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The determination of the initial conditions for long-term bounded relative motion under natural perturbations is an important theme in satellite cluster flight. Considering the most significant perturbation of the geopotential, namely, the \(\hbox {J}_{2}\) term, many researchers have proposed \(\hbox {J}_{2}\)-mitigating initial conditions for satellite-bounded relative motion. To improve the existing \(\hbox {J}_{2}\)-invariant conditions, two new methods for finding the correction factor are presented in this paper. In these two methods, Method 1 is obtained by minimizing the possible maximum drift in the along-track relative motion. However, Method 2 is designed by nullifying the rates of change of the bounds of the relative motion. Then the geometric character, such as the self-intersection of the \(\hbox {J}_{2}\)-invariant relative orbits, is discussed. The conditions of 0, 1 and 2 (the possible maximum number) self-intersection points are also derived. Then, using Gauss’s equations of planetary motion, an analytical optimal single-impulsive maneuver is deduced to guarantee the secular bounded relative motion under \(\hbox {J}_{2}\), too. Some numerical simulations are performed to validate the corresponding theoretical predictions. The results demonstrate that the proposed methods enhance performance for achieving the bounded relative motion under \(\hbox {J}_{2}\) effects and can be used for future satellite cluster flight missions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alfriend, K.T., Vadali, S.R., Gurfil, P., How, J.P., Breger, L.S.: Spacecraft Formation Flying: Dynamics, Control and Navigation. Butterworth-Heinemann, Oxford (2010)

    Google Scholar 

  • Arnold, V.I., Kozlov, V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, pp. 158–159 (1999)

  • Biggs, J.D., Becerra, V.M.: A search for invariant relative satellite motion. In: 4th Workshop on Satellite Constellations and Formation Flying, Sao Jose dos Campos, Brazil, pp. 203–213 (2005)

  • Breger, L., How, J.P., Alfriend, K.T.: Partial \(\text{ J }_{2}\)-invariant for spacecraft formations [C]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA 2006-6585, Keystone, Colorado, August 21–24 (2006)

  • Brown, O., Eremenko, P.: Fractionated space architectures: a vision for responsive space. In: 4th Responsive Space Conference, Los Angeles, CA, RS4-2006-1002, pp. 1–16 (2006)

  • Dang, Z., Wang, Z., Zhang, Y.: Modeling and analysis of the bounds of periodic satellite relative motion. J. Guid. Control Dyn. 37(6), 1984–1998 (2014A)

    Article  ADS  Google Scholar 

  • Dang, Z., Wang, Z., Zhang, Y.: An improved initial constraint among differential orbital elements for \({\rm J}_{2}\)-invariant relative orbits. In: 2nd IAA Conference on Dynamics and Control of Space Systems, IAA-AAS-DyCoSS2-05-09, Italy (2014b)

  • Gim, D.W., Alfriend, K.T.: State transition matrix of relative motion for the perturbed noncircular reference orbit. J. Guid. Control Dyn. 26(6), 956–971 (2003)

    Article  ADS  Google Scholar 

  • Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learning. Addison Wesley Longman, Reading (1989)

    MATH  Google Scholar 

  • Gurfil, P.: Analysis of \({\rm J}_{2}\)-perturbed motion using mean non-osculating orbital elements. Celest. Mech. Dyn. Astron. 90, 289–306 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Gurfil, P., Kholshevnikov, K.V.: Manifolds and metrics in the relative spacecraft motion problem. J. Guid. Control Dyn. 29(4), 1004–1010 (2006)

    Article  ADS  Google Scholar 

  • Gurfil, P.: Generalized solutions for relative spacecraft orbits under arbitrary perturbations. Acta Astronaut. 60, 61–78 (2007)

    Article  ADS  Google Scholar 

  • Jiang, F., Li, J., Baoyin, H., Gao, Y.: Study on relative orbit geometry of spacecraft formations in elliptical reference orbits. J. Guid. Control Dyn. 31(1), 123–134 (2008)

    Article  ADS  Google Scholar 

  • Jiang, F., Li, J., Baoyin, H.: Approximate analysis for relative motion of satellite formation flying in elliptical orbits. Celest. Mech. Dyn. Astron. 98, 31–66 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kasdin, N.J., Gurfil, P., Kolemen, E.: Canonical modeling of relative spacecraft motion via epicycle orbital elements. Celest. Mech. Dyn. Astron. 92, 337–370 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Kasdin, N.J., Kolemen, E.: Bounded, periodic relative motion using canonical epicyclic orbital elements. In: Proceedings of AAS/AIAA Space Flight Mechanics Meeting, Copper Mountain, Colorado, AAS, pp. 5-186 (2005)

  • Koon, W.S., Marsden, J.E.: \({\rm J}_{2}\) dynamics and formation flight. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, AIAA 2001-4090 (2001)

  • Martinusi, V., Gurfil, P.: Solutions and periodicity of satellite relative motion under even zonal harmonics perturbations. Celest. Mech. Dyn. Astron. 111, 387–414 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Martinusi, V., Gurfil, P.: Analytical derivation of single-impulsive maneuvers guaranteeing bounded relative motion under \({\rm J}_{2}\). J. Guid. Control Dyn. 37(1), 233–242 (2014)

    Article  ADS  Google Scholar 

  • Renner, G., Ekart, A.: Genetic algorithms in computer aided design. Comput. Aided Des. 35, 709–726 (2003)

    Article  Google Scholar 

  • Sabatini, M., Izzo, D., Palmerini, G.: Minimum control for spacecraft formations in a \({\rm J}_{2}\) perturbed environment. Celest. Mech. Dyn. Astron. 105, 141–157 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Schaub, H.: Spacecraft relative orbit description through orbit element differences. In: 14th U.S. National Congress of Theoretical and Applied Mechanics, Blacksburg, Virginia, June 23–28 (2002)

  • Schaub, H.: Relative orbit geometry through classical orbit element differences. J. Guid. Control Dyn. 27(5), 839–848 (2004)

    Article  ADS  Google Scholar 

  • Schaub, H., Alfriend, K.T.: \({\rm J}_{2}\)-invariant relative orbits for spacecraft formations. In: NASA GSFC Flight Mechanics and Estimation Conference, May (1999)

  • Schaub, H., Alfriend, K.T.: \({\rm J}_{2}\)-invariant relative orbits for spacecraft formations. Celest. Mech. Dyn. Astron. 79, 77–95 (2001)

    Article  ADS  MATH  Google Scholar 

  • Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. Aiaa (2003)

  • Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems, American Institute of Aeronautics and Astronautics, 2nd Revised Edition (2009)

  • Vallado, D.: Fundamentals of Astrodynamics and Applications. McGraw-Hill, New York City (1997)

    Google Scholar 

  • Vadali, S.R., Schaub, H., Alfriend, K.T.: Initial conditions and fuel-optimal control for formation flying satellite. In: AIAA GNC Conference, Portland, Oregon, Paper No. AIAA, pp. 99–426 (1999)

  • Xu, M., Xu, S.: \({\rm J}_{2}\)-invariant relative orbits via differential correction algorithm. Acta Mech. Sin. 23, 585–595 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Xu, M., Wang, Y., Xu, S.: On the existence of \({\rm J}_{2}\)-invariant relative orbits from the dynamical system point of view. Celest. Mech. Dyn. Astron. 112, 427–444 (2012)

    Article  ADS  Google Scholar 

  • Yan, H., Alfriend, K.T.: Numerical searches and optimal control of \({\rm J}_{2}\) invariant orbits. In: 16th Annual AAS/AIAA Spaceflight Mechanics Meeting, Tampa, AAS, pp. 6–163 (2006)

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (11002076) and the Graduate Student Innovation Foundation (B120101) of the National University of Defense Technology. The authors thank the anonymous reviewers and the associate editor for their invaluable advice in reviewing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Dang.

Appendix: Orbital elements’ variation under \(\hbox {J}_{2}\) perturbation

Appendix: Orbital elements’ variation under \(\hbox {J}_{2}\) perturbation

The variations of the mean elements under a \(\hbox {J}_{2}\) perturbation are as follows:

$$\begin{aligned} \frac{\partial \dot{\bar{{\Omega }}}}{\partial a}&= \frac{{7}}{{2}}\gamma a^{-\frac{{9}}{{2}}}\left( {{1}-e^{{2}}} \right) ^{-{2}}\cos i, \end{aligned}$$
(122)
$$\begin{aligned} \frac{\partial \dot{\bar{{\Omega }}}}{\partial e}&= -{4}e\gamma a^{-\frac{{7}}{{2}}}\left( {{1}-e^{{2}}} \right) ^{-{3}}\cos i, \end{aligned}$$
(123)
$$\begin{aligned} \frac{\partial \dot{\bar{{\Omega }}}}{\partial i}&= \gamma a^{-\frac{{7}}{{2}}}\left( {{1}-e^{{2}}} \right) ^{-{2}}\sin i, \end{aligned}$$
(124)
$$\begin{aligned} \frac{\partial \dot{\bar{{\omega }}}}{\partial a}&= -\frac{{7}}{{2}}\gamma a^{-\frac{{9}}{{2}}}\left( {{1}-e^{{2}}} \right) ^{-{2}}\left( {{2}-\frac{{5}}{{2}}\sin ^{{2}}i} \right) ,\end{aligned}$$
(125)
$$\begin{aligned} \frac{\partial \dot{\bar{{\omega }}}}{\partial e}&= {4}e\gamma a^{-\frac{{7}}{{2}}}\left( {{1}-e^{{2}}} \right) ^{-{3}}\left( {{2}-\frac{{5}}{{2}}\sin ^{{2}}i} \right) , \end{aligned}$$
(126)
$$\begin{aligned} \frac{\partial \dot{\bar{{\omega }}}}{\partial i}&= -{5}\gamma a^{-\frac{{7}}{{2}}}\left( {{1}-e^{{2}}} \right) ^{-{2}}\sin i\cos i, \end{aligned}$$
(127)
$$\begin{aligned} \frac{\partial \dot{\bar{{M}}}}{\partial a}&= -\frac{{7}}{{2}}\gamma a^{-\frac{{9}}{{2}}}\left( {{1}-e^{{2}}} \right) ^{-\frac{{3}}{{2}}}\left( {{1}-\frac{{3}}{{2}}\sin ^{{2}}i} \right) -\frac{{3}}{{2}}\sqrt{\mu }a^{-\frac{{5}}{{2}}}, \end{aligned}$$
(128)
$$\begin{aligned} \frac{\partial \dot{\bar{{M}}}}{\partial e}&= {3}e\gamma a^{-\frac{{7}}{{2}}}\left( {{1}-e^{{2}}} \right) ^{-\frac{{5}}{{2}}}\left( {{1}-\frac{{3}}{{2}}\sin ^{{2}}i} \right) ,\end{aligned}$$
(129)
$$\begin{aligned} \frac{\partial \dot{\bar{{M}}}}{\partial i}&= -{3}\gamma a^{-\frac{{7}}{{2}}}\left( {{1}-e^{{2}}} \right) ^{-\frac{{3}}{{2}}}\sin i\cos i. \end{aligned}$$
(130)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, Z., Wang, Z. & Zhang, Y. Improved initialization conditions and single impulsive maneuvers for \(\hbox {J}_{2}\)-invariant relative orbits. Celest Mech Dyn Astr 121, 301–327 (2015). https://doi.org/10.1007/s10569-014-9601-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-014-9601-4

Keywords

Navigation