Skip to main content
Log in

Three-dimensional time optimal double angular momentum reversal trajectory using solar sails

  • Original article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

A new concept of three dimensional non-Keplerian trajectories with double angular momentum reversal is investigated with high performance solar sails. The main discussion of this paper is about such 3D solar inverse orbits with inner constraints. The problem is addressed in a time optimal control framework solved by an indirect method. Two typical solar inverse orbits have been achieved and presented in a 3D non-dimensional dynamic model in the Heliocentric Inertial Frame. Starting from the Earth orbit ecliptic plane, a sailcraft in the inverse orbit exhibits a butterfly shape trajectory. As such, the new orbits are symmetrical with respect to a plane which contains the Sun-perihelion line. The relation of the sail attitude angles between the two symmetrical parts of the orbits are used to reduce the simulation effort. The quasi-heliostationary property at its aphelia is demonstrated with variation of the orbital radius. Evolutions of the orbital velocity and optimal sail orientations are also outlined and discussed to benefit future design work. As is suited for space observation guaranteed by its butterfly shape, the inverse orbits are thoroughly studied in terms of the concerned parameters. The discussion of the parametric influence is ranked in order as perihelion distance r E , required maximum position z max, perihelion position z f and the sail lightness number β. Suitable ranges of each parameter are adopted to illustrate the orbital variation trend. Through numerical simulations the features of such inverse orbits are further emphasized to provide an initial reference for future researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Dachwald B.: Optimal solar-sail trajectories for missions to the outer solar system. J. Guid. Control Dyn. 28(6), 1187–1193 (2005). doi:10.2514/1.13301

    Article  Google Scholar 

  • Kim M., Hall C.: Symmetries in the optimal control of solar sail Spacecraft. Celest. Mech. Dyn. Astron. 92, 273–293 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Koon W.S., Lo M.W., Marsden J.E. et al.: Dynamical systems, the three body problem and space mission design, pp. 60–72. Springer, Germany (2007)

    Google Scholar 

  • Leipold M., Wagner O.: Solar photonic assist trajectory design for solar sail missions to the outer solar system and beyond. Adv Astron. Sci. 100(2), 1035–1045 (1998)

    Google Scholar 

  • Macdonald M., McInnes C.R., Hughes G.: Technology requirements of exploration beyond Neptune by solar sail propulsion. J Spacecr Rocket. 47(3), 472–483 (2010). doi:10.2514/1.46657

    Article  Google Scholar 

  • McInnes C.R., Simmons J.F.L.: Solar sail halo orbits I: heliocentric case. J. Spacecr. Rockets 29(4), 466–471 (1992). doi:10.2514/3.25487

    Article  ADS  Google Scholar 

  • McInnes C.R., Simmons J.F.L.: Solar sail halo orbits II: geocentric case. J. Spacecr. Rockets 29(4), 472–479 (1992). doi:10.2514/3.25487

    Article  ADS  Google Scholar 

  • McInnes C.R.: Solar sail trajectories at the lunar L2 Lagrange point. J. Spacecr. Rockets 30(6), 782–784 (1992). doi:10.2514/3.26393

    Article  ADS  Google Scholar 

  • McInnes C.R.: Inverse solar sail trajectory problem. J. Guid. Control Dyn. 26(2), 369–371 (2003). doi:10.2514/2.5057

    Article  Google Scholar 

  • McInnes C.R.: Solar Sailing: Technology, Dynamics and Mission Applications, pp. 115–151. Springer, London (1999)

    Google Scholar 

  • Mengali, G., Quarta, A.A., Romagnoli, D. H2-Reversal Trajectory: a New Mission Application for High-Performance Solar Sails. In: Proceedings of Second International Symposium on Solar Sailing (ISSS 2010), Brooklyn, New York (2010)

  • Mengali G., Quarta A.A.: Optimal heliostationary missions of high-performance sailcraft. Acta Astronautica 60(8–9), 676–683 (2007). doi:10.1016/j.actaastro.2006.07.018

    Article  ADS  Google Scholar 

  • More, J.J., Garbow, B.S., Hillstrom, K.E.: User guide for minPack-1. Argonne National Laboratory, Rept. ANL-80-74 (1980). http://www.netlib.org/minpack

  • Osamu, M., Yuichi, T., Hirotaka, S., et al.: World’s first demonstration of solar power sailing by IKAROS. Second International Symposium on Solar Sailing (ISSS 2010), Brooklyn, New York (2010) [also:http://www.jaxa.jp/projects/sat/ikaros/index_e.html]

  • Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. Authorized Translation from the Russian, Translator: Trirogoff, K.N., Editor: Neustadt, L.W. (1962)

  • Powell M.J.D.: A hybrid method for nonlinear equations. In: Rabinowitz, P. (ed) Numerical Methods for Nonlinear Algebraic Equations, pp. 87–114. Gordon and Breach, London (1970)

    Google Scholar 

  • Rowe, W.M., Luedke, E.E., Edwards, D.K.: Thermal radiative properties of solar sail film materials. In: Proceedings of 2nd AIAA/ASME Thermophysics and Heat Transfer Conference. Palo Alto, California, USA, May 24–26, Paper AIAA 78-852 (1978)

  • Sauer, C.G., Jr.: Optimum Solar-Sail Interplanetary Trajectories. AIAA Paper 76–792 (1976)

  • Sauer, C.G. Jr.: Solar Sail Trajectories for Solar-Polar and Interstellar Probe Missions. AAS 99–336, 1–16 (1999). [Also: http://trs-new.jpl.nasa.gov/dspace/handle/2014/17917]

  • Tsiokovski, K.E.: Extension of man into outer space. (1921) [also, Symposium Jet Propulsion No.2, United Scientific and Technical Presses, 1936 (in Russian)]

  • Tsander, K.: From a scientific heritage. NASA TTF-541(1967)

  • Vulpetti G.: 3D high-speed escape heliocentric trajectories by all-metallic-sail low-mass sailcraft. Acta Astronautica 39, 161–170 (1996). doi:10.1016/S0094-5765(96)00133-6

    Article  ADS  Google Scholar 

  • Vulpetti G.: Sailcraft at high speed by orbital angular momentum reversal. Acta Astronautica 40(10), 733–758 (1997). doi:10.1016/S0094-5765(97)00153-7

    Article  ADS  Google Scholar 

  • Vulpetti G.: General 3D H-reversal trajectories for high-speed sailcraft. Acta Astronautica 40(1), 67–73 (1999). doi:10.1016/S0094-5765(99)00016-8

    Article  ADS  Google Scholar 

  • Zeng, X.Y., Li, J.F., Baoyin H.X. et al.: New applications of the H-reversal trajectory using solar sails. Res. Astro. Astrophys. 11(7), 863–878 (2011a)

  • Zeng X.Y., Li J.F., Baoyin H.X. et al.: Trajectory optimization and applications using high performance solar sails. Theor. Appl. Mech. Lett. 1(3), 1–7 (2011b). doi:10.1063/2.1103301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyuan Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, X., Baoyin, H., Li, J. et al. Three-dimensional time optimal double angular momentum reversal trajectory using solar sails. Celest Mech Dyn Astr 111, 415–430 (2011). https://doi.org/10.1007/s10569-011-9370-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-011-9370-2

Keywords

Navigation