Skip to main content
Log in

Autophagy induced by purple pitanga (Eugenia uniflora L.) extract triggered a cooperative effect on inducing the hepatic stellate cell death

  • Short Communication
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Activated hepatic stellate cells (HSC) are the major source of collagen I in liver fibrosis. Eugenia uniflora L. is a tree species that is widely distributed in South America. E. uniflora L. fruit—popularly known as pitanga—has been shown to exert beneficial properties. Autophagy contributes to the maintenance of cellular homeostasis and survival under stress situation, but it has also been suggested to be an alternative cell death pathway. Mitochondria play a pivotal role on signaling cell death. Mitophagy of damaged mitochondria is an important cell defense mechanism against organelle-mediated cell death signaling. We previously found that purple pitanga extract induced mitochondrial dysfunction, cell cycle arrest, and death by apoptosis and necrosis in GRX cells, a well-established activated HSC line. We evaluated the effects of 72-h treatment with crescent concentrations of purple pitanga extract (5 to 100 μg/mL) on triggering autophagy in GRX cells, as this is an important mechanism to cells under cytotoxic conditions. We found that all treated cells presented an increase in the mRNA expression of autophagy-related protein 7 (ATG7). Concomitantly, flow cytometry and ultrastructural analysis of treated cells revealed an increase of autophagosomes/autolysosomes that consequentially led to an increased mitophagy. As purple pitanga extract was previously found to be broadly cytotoxic to GRX cells, we postulated that autophagy contributes to this scenario, where cell death seems to be an inevitable fate. Altogether, the effectiveness on inducing activated HSC death can make purple pitanga extract a good candidate on treating liver fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alice CB, Vargas VM, Silva GA, et al. Screening of plants used in south Brazilian folk medicine. J Ethnopharmacol. 1991;35:165–71.

    Article  CAS  PubMed  Google Scholar 

  • Atzori L, Poli G, Perra A. Hepatic stellate cell: a star cell in the liver. Int J Biochem Cell Biol. 2009;41:1639–42.

    Article  CAS  PubMed  Google Scholar 

  • Bagetti M, Facco EMP, Piccolo J, et al. Physicochemical characterization and antioxidant capacity of pitanga fruits (Eugenia uniflora L.). Cienc Tecnol Aliment. 2011;31:147–54.

    Article  Google Scholar 

  • Booth LA, Tavallai S, Hamed HA, et al. The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell Signal. 2014;26:549–55.

    Article  CAS  PubMed  Google Scholar 

  • Borojevic R, Monteiro AN, Vinhas SA, et al. Establishment of a continuous cell line from fibrotic schistosomal granulomas in mice livers. In Vitro Cell Dev Biol. 1985;21:382–90.

    Article  CAS  PubMed  Google Scholar 

  • Borojevic R, Guaragna RM, Margis R, et al. In vitro induction of the fat-storing phenotype in a liver connective tissue cell line-GRX. In Vitro Cell Dev Biol. 1990;26:361–8.

    Article  CAS  PubMed  Google Scholar 

  • Braganca De Moraesn CM, Melo DA, Santos RC, et al. Antiproliferative effect of catechin in GRX cells. Biochem Cell Biol. 2012;90:575–84.

    Article  Google Scholar 

  • Celli GB, Pereira-Netto AB, Beta T. Comparative analysis of total phenolic content, antioxidant activity, and flavonoids profile of fruits from two varieties of Brazilian cherry (Eugenia uniflora L.) throughout the fruit developmental stages. Food Res Int. 2011;44:2442–51.

    Article  CAS  Google Scholar 

  • Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol. 2012;13:7–12.

    CAS  Google Scholar 

  • De Souza IC, Martins LA, De Vasconcelos M, et al. Resveratrol regulates the quiescence-like induction of activated stellate cells by modulating the PPARgamma/SIRT1 ratio. J Cell Biochem. 2015;116:2304–12.

    Article  PubMed  Google Scholar 

  • Denardin CC, Parisi MM, Martins LA, et al. Antiproliferative and cytotoxic effects of purple pitanga (Eugenia uniflora L.) extract on activated hepatic stellate cells. Cell Biochem Funct. 2014;32:16–23.

    Article  CAS  PubMed  Google Scholar 

  • Denardin CC, Hirsch GE, Da Rocha RF, et al. Antioxidant capacity and bioactive compounds of four Brazilian native fruits. J Food Drug Anal. 2015;23:387–98.

    Article  CAS  Google Scholar 

  • Eisenberg-Lerner A, Kimchi A. DAP-kinase regulates JNK signaling by binding and activating protein kinase D under oxidative stress. Cell Death Differ. 2007;14:1908–15.

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL. Transcriptional regulation of stellate cell activation. J Gastroenterol Hepatol. 2006;21(Suppl 3):S79–83.

    Article  CAS  PubMed  Google Scholar 

  • Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs Y, Steller H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol. 2015;16:329–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis. 2001;21:311–35.

    Article  CAS  PubMed  Google Scholar 

  • Goldman SJ, Taylor R, Zhang Y, et al. Autophagy and the degradation of mitochondria. Mitochondrion. 2010;10:309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawada N, Seki S, Inoue M, et al. Effect of antioxidants, resveratrol, quercetin, and N-acetylcysteine, on the functions of cultured rat hepatic stellate cells and Kupffer cells. Hepatology. 1998;27:1265–74.

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Rodriguez-Enriquez S, Lemasters J. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007;462:245–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 2008;4:151–75.

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163.

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  • Martins LA, Coelho BP, Behr G, et al. Resveratrol induces pro-oxidant effects and time-dependent resistance to cytotoxicity in activated hepatic stellate cells. Cell Biochem Biophys. 2014a;68:247–57.

    Article  CAS  PubMed  Google Scholar 

  • Martins LA, Vieira MQ, Ilha M, et al. The interplay between apoptosis, mitophagy and mitochondrial biogenesis induced by resveratrol can determine activated hepatic stellate cells death or survival. Cell Biochem Biophys. 2014b;71:657–72.

    Article  Google Scholar 

  • Ni HM, Williams JA, Yang H, et al. Targeting autophagy for the treatment of liver diseases. Pharmacol Res. 2012;66:463–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rautou P-E, Mansouri A, Lebrec D, et al. Autophagy in liver diseases. J Hepatol. 2010;53:1123–34.

    Article  CAS  PubMed  Google Scholar 

  • Rockey DC. Translating an understanding of the pathogenesis of hepatic fibrosis to novel therapies. Clin Gastroenterol Hepatol. 2013;11:224–231.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmeda-Hirschmann G, Theoduloz C, Franco L, et al. Preliminary pharmacological studies on Eugenia uniflora leaves: xanthine oxidase inhibitory activity. J Ethnopharmacol. 1987;21:183–6.

    Article  CAS  PubMed  Google Scholar 

  • Skrovankova S, Sumczynski D, Mlcek J, et al. Bioactive compounds and antioxidant activity in different types of berries. Int J Mol Sci. 2015;16:24673–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza IC, Martins LA, Coelho BP, et al. Resveratrol inhibits cell growth by inducing cell cycle arrest in activated hepatic stellate cells. Mol Cell Biochem. 2008;315:1–7.

    Article  CAS  PubMed  Google Scholar 

  • Swain T, Hillis WE. The phenolic constituents of Prunus domestica. I.—the quantitative analysis of phenolic constituents. J Sci Food Agric. 1959;10:63–8.

    Article  CAS  Google Scholar 

  • Thoen LF, Guimaraes EL, Dolle L, et al. A role for autophagy during hepatic stellate cell activation. J Hepatol. 2011;55:1353–60.

    Article  CAS  PubMed  Google Scholar 

  • Velazquez E, Tournier HA, Mordujovich De Buschiazzo P, et al. Antioxidant activity of Paraguayan plant extracts. Fitoterapia. 2003;74:91–7.

    Article  CAS  PubMed  Google Scholar 

  • Vicente CP, Fortuna VA, Margis R, et al. Retinol uptake and metabolism, and cellular retinol binding protein expression in an in vitro model of hepatic stellate cells. Mol Cell Biochem. 1998;187:11–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS) for financial support; and Embrapa Clima Temperado for their collaboration and supply of fruit samples. The authors thank to Centro de Microscopia e Microanálise (CMM-UFRGS) by technical assistance in confocal and transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Costa Rodrigues Guma.

Additional information

Cristiane C. Denardin and Leo A. M. Martins contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denardin, C.C., Martins, L.A.M., Parisi, M.M. et al. Autophagy induced by purple pitanga (Eugenia uniflora L.) extract triggered a cooperative effect on inducing the hepatic stellate cell death. Cell Biol Toxicol 33, 197–206 (2017). https://doi.org/10.1007/s10565-016-9366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-016-9366-5

Keywords

Navigation