Skip to main content
Log in

Differential response of three cell types to dual stress of nitric oxide and radiation

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The perception of toxicity to nitric oxide (NO) and irradiation (IR) by three different cell types has been studied. The three cell types are the macrophage like RAW264.7 cells, EL4 lymphoma cells, and splenocytes, which represent the different components of a tumor. These three cell types respond differently to NO donors (SNP and SNAP) and radiation treatment. The macrophages were found to be most radio-resistant and insensitive to NO donors. The innate resistance of the macrophages was not due to its antioxidant defense system since there was no significant activation of the enzymes (superoxide dismutases, catalase, and glutathione peroxidase) in RAW264.7 cells after NO donor and irradiation. But the cell cycle arrest of the three cell types was different from each other. The EL4 cells were found to arrest in the G2/M phase while the macrophages were found arrested in the G1 phase of the cell cycle. Such specific killing of the tumor cell in response to NO donor while sparing the macrophages can be of immense importance to radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beckman JS, Crow JP. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans. 1993;21(2):330–4.

    PubMed  CAS  Google Scholar 

  • Brockhaus F, Brune B. Overexpression of CuZn superoxide dismutase protects RAW 264.7 macrophages against nitric oxide cytotoxicity. Biochem J. 1999;338(Pt 2):295–303.

    Article  PubMed  CAS  Google Scholar 

  • Brune B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 2003;10(8):864–9.

    Article  PubMed  Google Scholar 

  • Chang CI, Liao JC, et al. Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res. 2001;61(3):1100–6.

    PubMed  CAS  Google Scholar 

  • Crowell JA, Steele VE, et al. Is inducible nitric oxide synthase a target for chemoprevention? Mol Cancer Ther. 2003;2(8):815–23.

    PubMed  CAS  Google Scholar 

  • Dewey DL. Effect of oxygen and nitric oxide on the radio-sensitivity of human cells in tissue culture. Nature. 1960;186:780–2.

    Article  PubMed  CAS  Google Scholar 

  • Epperly MW, Defilippi S, et al. Intratracheal injection of manganese superoxide dismutase (MnSOD) plasmid/liposomes protects normal lung but not orthotopic tumors from irradiation. Gene Ther. 2000;7(12):1011–8.

    Article  PubMed  CAS  Google Scholar 

  • Griffin RJ, Makepeace CM, et al. Radiosensitization of hypoxic tumor cells in vitro by nitric oxide. Int J Radiat Oncol Biol Phys. 1996;36(2):377–83.

    Article  PubMed  CAS  Google Scholar 

  • Harris ED. Regulation of antioxidant enzymes. FASEB J. 1992;6(9):2675–83.

    PubMed  CAS  Google Scholar 

  • Hartwell LH, Kastan MB. Cell cycle control and cancer. Science. 1994;266(5192):1821–8.

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science. 1989;246(4930):629–34.

    Article  PubMed  CAS  Google Scholar 

  • Hirose K, Longo DL, et al. Overexpression of mitochondrial manganese superoxide dismutase promotes the survival of tumor cells exposed to interleukin-1, tumor necrosis factor, selected anticancer drugs, and ionizing radiation. FASEB J. 1993;7(2):361–8.

    PubMed  CAS  Google Scholar 

  • Hofseth LJ, Hussain SP, et al. Nitric oxide in cancer and chemoprevention. Free Radic Biol Med. 2003;34(8):955–68.

    Article  PubMed  CAS  Google Scholar 

  • Howard-Flanders P. Effect of nitric oxide on the radiosensitivity of bacteria. Nature. 1957;180(4596):1191–2.

    Article  PubMed  CAS  Google Scholar 

  • Jansen S, Arning J, et al. S-Nitroso compounds interfere with zinc probing by Zinquin. Anal Biochem. 2004;332(1):145–52.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins DC, Charles IG, et al. Roles of nitric oxide in tumor growth. Proc Natl Acad Sci USA. 1995;92(10):4392–6.

    Article  PubMed  CAS  Google Scholar 

  • Kim YM, Talanian RV, et al. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem. 1997;272(49):31138–48.

    Article  PubMed  CAS  Google Scholar 

  • Kim PK, Zamora R, et al. The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol. 2001;1(8):1421–41.

    Article  PubMed  CAS  Google Scholar 

  • Kumar KS, Vaishnav YN, et al. Radioprotection by antioxidant enzymes and enzyme mimetics. Pharmacol Ther. 1988;39(1–3):301–9.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster Jr JR, Xie K. Tumors face NO problems? Cancer Res. 2006;66(13):6459–62.

    Article  PubMed  CAS  Google Scholar 

  • MacMicking J, Xie QW, et al. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–50.

    Article  PubMed  CAS  Google Scholar 

  • Marks GS, McLaughlin BE, et al. Time-dependent increase in nitric oxide formation concurrent with vasodilation induced by sodium nitroprusside, 3-morpholinosydnonimine, and S-nitroso-N-acetylpenicillamine but not by glyceryl trinitrate. Drug Metab Dispos. 1995;23(11):1248–52.

    PubMed  CAS  Google Scholar 

  • Mitchell JB, DeGraff W, et al. Redox generation of nitric oxide to radiosensitize hypoxic cells. Int J Radiat Oncol Biol Phys. 1998;42(4):795–8.

    Article  PubMed  CAS  Google Scholar 

  • Narang H, Dhariwala FA, et al. Effect of nitric oxide donor and gamma irradiation on modifications of ERK and JNK in murine peritoneal macrophages. J Cell Commun Signal. 2007;1(3–4):219–26.

    Article  PubMed  Google Scholar 

  • Nathan CF, Hibbs Jr JB. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991;3(1):65–70.

    Article  PubMed  CAS  Google Scholar 

  • O’Connell MJ, Walworth NC, et al. The G2-phase DNA-damage checkpoint. Trends Cell Biol. 2000;10(7):296–303.

    Article  PubMed  Google Scholar 

  • Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(4):928–42.

    Article  PubMed  Google Scholar 

  • Phoa N, Epe B. Influence of nitric oxide on the generation and repair of oxidative DNA damage in mammalian cells. Carcinogenesis. 2002;23(3):469–75.

    Article  PubMed  CAS  Google Scholar 

  • Pietarinen P, Raivio K, et al. Catalase and glutathione reductase protection of human alveolar macrophages during oxidant exposure in vitro. Am J Respir Cell Mol Biol. 1995;13(4):434–41.

    PubMed  CAS  Google Scholar 

  • Schmidtke JR, Dixon FJ. The functional capacity of x-irradiated macrophages. J Immunol. 1972;108(6):1624–30.

    PubMed  CAS  Google Scholar 

  • St Clair DK, Wan XS, et al. Suppression of radiation-induced neoplastic transformation by overexpression of mitochondrial superoxide dismutase. Mol Carcinog. 1992;6(4):238–42.

    Article  PubMed  CAS  Google Scholar 

  • Sturgeon CM, Knight ZA, et al. Effect of combined DNA repair inhibition and G2 checkpoint inhibition on cell cycle progression after DNA damage. Mol Cancer Ther. 2006;5(4):885–92.

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Chen Y, et al. Role of antioxidant enzymes on ionizing radiation resistance. Free Radic Biol Med. 1998;24(4):586–93.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Kubota Y, et al. The effect of external gamma-irradiation on 59Fe release in vitro from alveolar macrophages previously having ingested 59Fe-iron hydroxide colloid. J Radiat Res (Tokyo). 1990;31(3):263–9.

    Article  CAS  Google Scholar 

  • Thomas DD, Ridnour LA, et al. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med. 2008;45(1):18–31.

    Article  PubMed  CAS  Google Scholar 

  • Warner B, Papes R, et al. Expression of human Mn SOD in Chinese hamster ovary cells confers protection from oxidant injury. Am J Physiol. 1993;264(6 Pt 1):L598–605.

    PubMed  CAS  Google Scholar 

  • Wassmann S, Wassmann K, et al. Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension. 2004;44(4):381–6.

    Article  PubMed  CAS  Google Scholar 

  • Weinert TA, Hartwell LH. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science. 1988;241(4863):317–22.

    Article  PubMed  CAS  Google Scholar 

  • Xie K, Huang S, et al. Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med. 1995;181(4):1333–43.

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Liu LZ, et al. The role of nitric oxide in cancer. Cell Res. 2002;12(5–6):311–20.

    Article  PubMed  Google Scholar 

  • Yoshioka Y, Kitao T, et al. Nitric oxide protects macrophages from hydrogen peroxide-induced apoptosis by inducing the formation of catalase. J Immunol. 2006;176(8):4675–81.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshi Narang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhariwala, F.A., Narang, H. & Krishna, M. Differential response of three cell types to dual stress of nitric oxide and radiation. Cell Biol Toxicol 28, 161–173 (2012). https://doi.org/10.1007/s10565-012-9213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-012-9213-2

Keywords

Navigation