Skip to main content

Advertisement

Log in

The insect repellent DEET (N,N-diethyl-3-methylbenzamide) increases the synthesis of glutathione S-transferase in cultured mosquito cells

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

DEET (N,N-diethyl-3-methylbenzamide) is the active ingredient used in many commonly used insect repellents, but its mode of action remains poorly understood. Efforts to identify properties that could lead to the development of more effective active ingredients have distinguished among DEET’s repellent, deterrent, and insecticidal activities. We used an Aedes albopictus mosquito cell line to evaluate DEET’s toxicological properties in the absence of sensory input mediated by the olfactory system. When cells were treated with DEET and labeled with [35S]methionine/cysteine, a single 25-kDa protein was induced, relative to other proteins, on SDS–polyacrylamide gels. The 25-kDa band from DEET-treated cells was enriched in peptides corresponding to glutathione S-transferase D10 and/or theta in the Aedes aegypti genome. Consistent with the increased expression of the labeled protein, DEET-treated cells had increased glutathione S-transferase activity, and the radiolabeled band bound to Sepharose 4B containing reduced glutathione. By analyzing partial tryptic digests, we established that DEET induces the homolog of A. aegypti glutathione S-transferase, class theta, corresponding to protein XP_001658009.1 in the NCBI database. This specific effect of DEET at the subcellular level suggests that DEET induces physiological responses that extend beyond recognition by the peripheral olfactory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amer A, Mehlhorn H. The sensilla of Aedes and Anopheles mosquitoes and their importance in repellancy. Parasitol Res. 2006;99:491–9.

    Article  PubMed  Google Scholar 

  • Bernier UR, Furman KD, Kline DL, Allan SA, Barnard DR. Comparison of contact and spatial repellency of catnip oil and N,N-diethyl-3-methylbenzamide (DEET) against mosquitoes. J Med Entomol. 2005;42:306–11.

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Ortelli F, Rossiter LC, Hemingway J, Ranson H. The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC Genomics. 2003;4:35 (http://www.biomedcentral.com/1471-2164/4/35).

  • Ditzen M, Pellegrino M, Vosshall LB. Insect odorant receptors are molecular targets of the insect repellent DEET. Science. 2008;319:1838–42.

    Article  PubMed  CAS  Google Scholar 

  • Dulbecco R, Vogt M. Plaque formation and isolation of pure lines with poliomyelitis virus. J Exp Med. 1954;99:167–82.

    Article  PubMed  CAS  Google Scholar 

  • Einarson MB, Pugacheva EN, Orlinick JR. Preparation of GST fusion proteins. Cold Spring Harbor Protoc; 2007. doi:10.1101/pdb.prot4738.

  • Enayati AA, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol Biol. 2005;14:3–8.

    Article  PubMed  CAS  Google Scholar 

  • Fai FY, Lee L. Perception and use of insect repellent in the Singapore Armed Forces. Mil Med. 1996;161:113–6.

    PubMed  CAS  Google Scholar 

  • Fallon AM. Transfection of cultured mosquito cells. In: Crampton JM, Beard CB, Louis K, editors. The molecular biology of insect disease vectors: a methods manual. New York: Chapman and Hall; 1997. p. 430–43.

    Google Scholar 

  • Fallon AM, Witthuhn BA. Proteasome activity in a naïve mosquito cell line infected with Wolbachia pipientis wAlbB. In Vitro Cell Dev Biol Anim. 2009;45:460–6.

    Article  PubMed  CAS  Google Scholar 

  • Fradin MS, Day JF. Comparative efficacy of insect repellents against mosquito bites. N Engl J Med. 2002;347:13–8.

    Article  PubMed  CAS  Google Scholar 

  • Gambel JM, Brundage JF, Kuschner RA, Kelley PW. Deployed US Army soldiers’ knowledge and use of personal protection measures to prevent arthropod-related casualties. J Travel Med. 1998;5:217–20.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert IH, Gouck HK, Smith CN. New mosquito repellents. J Econ Entomol. 1955;48:741–3.

    CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jacoby WB. Glutathione–S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.

    PubMed  CAS  Google Scholar 

  • Hemingway J, Hawkes N, Prapanthadara L, Jayawardenal KGI, Ranson H. The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance. Phil Trans R Soc Lond B. 1998;353:1695–9.

    Article  CAS  Google Scholar 

  • Kasai S, Komagata O, Okamura Y, Tomita T. Alternative splicing and developmental regulation of glutathione transferases in Culex quinquefasciatus Say. Pest Biochem Physiol. 2009;94:21–9.

    Article  CAS  Google Scholar 

  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 2002;74:5383–92.

    Article  PubMed  CAS  Google Scholar 

  • Kinter M, Sherman, NE. The preparation of protein digests for mass spectrometric sequencing experiments. In: Protein sequencing and identification using tandem mass spectrometry. New York: Wiley; 2000:147–65

  • Kline DL, Bernier UR, Posey KH, Barnard DR. Olfactometric evaluation of spatial repellents for Aedes aegypti. J Med Entomol. 2003;40:463–7.

    Article  PubMed  CAS  Google Scholar 

  • Klun JA, Khrimian A, Debboun M. Repellent and deterrent effects of SS220, Picaridin, and DEET suppress human blood feeding by Aedes aegypti, Anopheles stephensi, and Phlebotomus papatasi. J Med Entomol. 2006a;43:34–9.

    Article  PubMed  CAS  Google Scholar 

  • Klun JA, Khrimian A, Rowton E, Kramer M, Debboun M. Biting deterrent activity of a DEET analog, two DEPA analogs, and SS220 applied topically to human volunteers compared with DEET against three species of blood-feeding flies. J Med Entomol. 2006b;43:1248–51.

    Article  PubMed  CAS  Google Scholar 

  • Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E. Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem Mol Biol. 2001;31:313–9.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  PubMed  CAS  Google Scholar 

  • Low WY, Ng HL, Morton CJ, Parker MW, Batterham P, Robin C. Molecular evolution of glutathione S-transferases in the genus Drosophila. Genetics. 2007;177:1363–75.

    Article  PubMed  CAS  Google Scholar 

  • McCabe ET, Barthel WF, Gertler SI, Hall SA. Insect repellents. III. N,N-Diethylamides. J Org Chem. 1954;19:493–8.

    Article  CAS  Google Scholar 

  • Nene V, Wortma JR, Lawson D, Haas B, Kodira C, Tu ZJ, et al. Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007;316:1718–23.

    Article  PubMed  CAS  Google Scholar 

  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75:4646–58.

    Article  PubMed  CAS  Google Scholar 

  • Pickett CB, Lu AYH. Glutathione S-transferases: gene structure, regulation, and biological function. Annu Rev Biochem. 1989;58:743–64.

    Article  PubMed  CAS  Google Scholar 

  • Pickett JA, Birkett MA, Logan JG. DEET repels ORNery mosquitoes. Proc Natl Acad Sci USA. 2008;105:13195–6.

    Article  PubMed  CAS  Google Scholar 

  • Ranson H, Collins F, Hemingway J. The role of alternative mRNA splicing in generating heterogeneity within the Anopheles gambiae class I glutathione S-transferase family. Proc Natl Acad Sci USA. 1998;95:14284–9.

    Article  PubMed  CAS  Google Scholar 

  • Shih KM, Gerenday A, Fallon AM. Culture of mosquito cells in Eagle’s medium. In Vitro Cell Dev Biol. 1998;34:629–30.

    Article  CAS  Google Scholar 

  • Shotkoski FA, Fallon AM. Genetic changes in methotrexate-resistant mosquito cells. Archs Insect Biochem Physiol. 1990;15:79–92.

    Article  CAS  Google Scholar 

  • Shotkoski FA, Fallon AM. An amplified insect dihydrofolate reductase gene contains a single intron. Eur J Biochem. 1991;201:157–60.

    Article  PubMed  CAS  Google Scholar 

  • Shotkoski FA, Fallon AM. The mosquito dihydrofolate reductase gene functions as a dominant selectable marker in transfected cells. Insect Biochem Mol Biol. 1993;23:883–93.

    Article  PubMed  CAS  Google Scholar 

  • Syed Z, Leal WS. Mosquitoes smell and avoid the insect repellent DEET. Proc Natl Acad Sci USA. 2008;105:13598–603.

    Article  PubMed  CAS  Google Scholar 

  • Wilce MCJ, Board PG, Feil SC, Parker MW. Crystal structure of a theta-class glutathione transferase. EMBO J. 1995;14:2133–43.

    PubMed  CAS  Google Scholar 

  • Xue R-D, Barnard DR, Ali A. Laboratory and field evaluation of insect repellents as larvicides against the mosquitoes Aedes albopictus and Anopheles albimanus. Med Vet Entomol. 2001;15:374–80.

    Article  PubMed  CAS  Google Scholar 

  • Xue R-D, Ali A, Barnard DR. Effects of in vivo exposure to DEET on blood feeding behavior and fecundity in Anopheles quadrimaculatus (Diptera: Culicidae). Exp Parasitol. 2007;116:201–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a University of Minnesota College of Food, Agricultural and Natural Resource Sciences UROP (Undergraduate Research Opportunities Program) grant to VJH and by the University of Minnesota Agricultural Experiment Station, St. Paul, MN. Data analyses were done through the University of Minnesota Supercomputing Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Fallon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellestad, V.J., Witthuhn, B.A. & Fallon, A.M. The insect repellent DEET (N,N-diethyl-3-methylbenzamide) increases the synthesis of glutathione S-transferase in cultured mosquito cells. Cell Biol Toxicol 27, 149–157 (2011). https://doi.org/10.1007/s10565-010-9177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-010-9177-z

Keywords

Navigation