Skip to main content

Advertisement

Log in

Activation of p44/42 MAPK plays a role in the TBT-induced loss of human natural killer (NK) cell function

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells destroy (lyse) tumor cells, virally infected cells, and antibody-coated cells. Previous studies indicated that exposure to the environmental contaminant tributyltin (TBT) decreases the lytic function of NK cells and activates mitogen-activated protein kinases (MAPK), including p44/42 (Aluoch and Whalen Toxicology 209:263–277, 2005). If activation of p44/42 is required for TBT-induced decreases of lytic function, then activation of p44/42 to similar extents by pharmacological agents such as phorbol 12-myristate 13-acetate (PMA) should mimic to some extent changes induced in NK cells with TBT exposures. NK cells were exposed to PMA concentrations between 0.25 and 10 nM for 10 min, 1 h, and 6 h before determining the lytic function (51Cr release assay) and phosphorylation state of MAPKs (Western blot). A 1-h exposure of NK cells to 5 nM PMA resulted in a loss of lytic function of 47%. Western blot analysis showed that a 1-h exposure to 5 nM PMA caused a sixfold increase in phospho-p44/42 levels. Previous studies showed a fivefold increase in phospho-p44/42 in response to a 1-h exposure to 300 nM TBT. Exposure to 300 nM TBT caused about a 40% decrease in lytic function. This study supports the hypothesis that p44/42 activation (as seen with TBT exposures) can cause a loss of NK-cell lytic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraha A, Whalen MM. The role of p44/42 activation in tributyltin-induced inhibition of human natural killer cells: effects of MEK inhibitors. J Appl Toxicol. 2009;29:165–73.

    Article  CAS  PubMed  Google Scholar 

  • Aluoch AO, Whalen MM. Tributyltin-induced effects on MAP kinases p38 and p44/42 in human natural killer cells. Toxicology. 2005;209:263–77.

    Article  CAS  PubMed  Google Scholar 

  • Aluoch AO, Odman-Ghazi SO, Whalen MM. Alteration of an essential NK cell signaling pathway by low doses of tributyltin in human natural killer cells. Toxicology. 2006;224:229–37.

    Article  CAS  PubMed  Google Scholar 

  • Aluoch AO, Odman-Ghazi SO, Whalen MM. Pattern of MAP kinases p44/42 and JNK activation by non-lethal doses of tributyltin in human natural killer cells. Arch Toxicol. 2007;81:271–7.

    Article  CAS  PubMed  Google Scholar 

  • Biron CA, Byron KS, Sullivan JL. Severe herpes virus in an adolescent without natural killer cells. New Engl J Med. 1989;320:1731–5.

    Article  CAS  PubMed  Google Scholar 

  • Dudimah FD, Odman-Ghazi SO, Hatcher F, Whalen MM. Effect of tributyltin (TBT) on the ATP levels in human natural killer cells: relationship to TBT- induced decreases in NK function. J Appl Toxicol. 2007;27:86–94.

    Article  CAS  PubMed  Google Scholar 

  • Fleisher G, Koven N, Kamiya H, Henle W. A non-X-linked syndrome with susceptibility to severe Epstein–Barr virus infections. J Pediatr. 1982;100:727–30.

    Article  CAS  PubMed  Google Scholar 

  • Hanna N. Expression of metastatic potential of tumor cells in young nude mice is correlated with low levels of natural-killer cell mediated cytotoxicity. Int J Cancer. 1980;26:675–90.

    Article  CAS  PubMed  Google Scholar 

  • Hanson RD, Grisolano JL, Lay TJ. Consensus AP-1 and CRE motifs upstream from the human cytotoxic serine protease B (CSP-B/CGL-1) gene synergizes to activate transcription. Blood. 1993;82:2749–57.

    CAS  PubMed  Google Scholar 

  • Kannan K, Tanabe S, Tatsukawa R. Occurrence of butyltin residues in certain foodstuffs. Bull Environ Contam Toxicol. 1995a;55:510–6.

    Article  CAS  PubMed  Google Scholar 

  • Kannan K, Tanabe S, Tatsukawa R, Williams RJ. Butyltin residues in fish from Australia, Papua New Guinea and the Solomon Islands. Int J Environ Anal Chem. 1995b;61:263–73.

    Article  CAS  Google Scholar 

  • Kannan K, Tanabe S, Iwata H, Tatsukawa R. Butyltins in muscle and liver of fish collected from certain Asian and Oceanian countries. Environ Pollut. 1995c;90:279–90.

    Article  CAS  PubMed  Google Scholar 

  • Kannan K, Senthilkumar K, Giesy JP. Occurrence of butyltin compounds in human blood. Environ Sci Technol. 1999;33:1776–9.

    Article  CAS  Google Scholar 

  • Kiessling R, Haller O. Natural killer cells in the mouse, an alternative surveillance mechanism? Contemp Top Immunobiol. 1978;8:171–201.

    CAS  PubMed  Google Scholar 

  • Kimbrough RD. Toxicity and health effects of selected organotins compounds: a review. Environ Health Perspect. 1976;14:51–6.

    Article  CAS  PubMed  Google Scholar 

  • Lane R, Ghazi SO, Whalen MM. Increases in cytosolic calcium ion levels in human natural killer cells in response to butyltin exposure. Arch Environ Contam Toxicol. 2009;57(4):816–25.

    Article  CAS  PubMed  Google Scholar 

  • Laughlin RB, Linden O. Fate and effects of organotin compounds. Ambio. 1985;14:88–94.

    CAS  Google Scholar 

  • Loganathan BG, Kannan K, Owen DA, Sajwan KS. Butyltin compounds in freshwater ecosystems. In: Lipnick RL, Hermens J, Jones K, Muir D, editors. Persistent, bioaccumulative, and toxic chemicals. I Fate and Exposure, Am. Chem. Soc. London: Oxford University Press; 2000.

    Google Scholar 

  • Lotzova E. Definition and function of natural killer cells. Natural Immun. 1993;12:177–93.

    Google Scholar 

  • Middlebrook JL, Leatherman DL. Binding of T-2 toxin to eukaryotic cell ribosomes. Biochem Pharmacol. 1989;38:3103–10.

    Article  CAS  PubMed  Google Scholar 

  • O’Shea J, Ortaldo JR. The biology of natural killer cells: insight into the molecular basis of function. In: Lewis CE, McGee JOD, editors. The natural killer cell. Oxford: IRL; 1992. p. 1–40.

    Google Scholar 

  • Roper WL. Toxicological profile for tin. USA: U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry; 1992.

    Google Scholar 

  • Shifrin VI, Anderson P. Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J Biol Chem. 1999;274:13985–92.

    Article  CAS  PubMed  Google Scholar 

  • Tanabe S, Prudente M, Mizuno T, Hasegawa J, Iwata H, Miyazaki N. Butyltin contamination in marine mammals from north Pacific and Asian coastal waters. Environ Sci Technol. 1998;32:193–8.

    Article  CAS  Google Scholar 

  • Thomas LD, Shah H, Green SA, Bankhurst AD, Whalen MM. Tributyltin exposure causes decreased granzyme B and perforin levels in human natural killer cells. Toxicology. 2004;200:221–33.

    Article  CAS  PubMed  Google Scholar 

  • Thomas LD, Shah H, Bankhurst AD, Whalen MM. Effects of interleukins 2 and 12 on the levels of granzyme B and perforin and their mRNAs in tributyltin-exposed human natural killer cells. Arch Toxicol. 2005;79:711–20.

    Article  CAS  PubMed  Google Scholar 

  • Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376.

    Article  CAS  PubMed  Google Scholar 

  • Vivier E, Nunes JA, Vely F. Natural killer cell signaling pathways. Science. 2004;306:1517–9.

    Article  CAS  PubMed  Google Scholar 

  • Whalen MM. Inhibition of human natural killer cell function in vitro by glucose concentrations seen in poorly controlled diabetes. Cell Physiol Biochem. 1997;7:53–60.

    Article  CAS  Google Scholar 

  • Whalen MM, Loganathan BG, Kannan K. Immunotoxicity of environmentally relevant concentrations of butyltins on human natural killer cells in vitro. Environ Res. 1999;81:108–16.

    Article  CAS  PubMed  Google Scholar 

  • Whalen MM, Williams TB, Green SA, Loganathan BG. Interleukins 2 and 12 produce recovery of cytotoxic function in tributyltin-exposed human natural killer cells. Environ Res. 2002;88:189–209.

    Google Scholar 

  • Whalen MM, Loganathan BG, Yamashita N, Saito T. Immunomodulation of human natural killer cell cytotoxic function by triazine and carbamate pesticides. Chemico-Biological Int. 2003;145:311–9.

    Article  CAS  Google Scholar 

  • Yamada S, Fuji Y, Mikami E, Kawamura N, Hayakawa J. Small-scale survey of organotin compounds in household commodities. J AOAC Int. 1993;76:436–41.

    CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by Grant 2S06GM-08092-34 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret M. Whalen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudimah, F.D., Griffey, D., Wang, X. et al. Activation of p44/42 MAPK plays a role in the TBT-induced loss of human natural killer (NK) cell function. Cell Biol Toxicol 26, 435–444 (2010). https://doi.org/10.1007/s10565-010-9154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-010-9154-6

Keywords

Navigation