Skip to main content

Advertisement

Log in

Hydrogen Production by Steam Reforming of Ethanol Over Mesoporous Ni–Al2O3–ZrO2 Catalysts

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

This review paper reports the recent progress concerning the application of nickel–alumina–zirconia based catalysts to the ethanol steam reforming for hydrogen production. Several series of mesoporous nickel–alumina–zirconia based catalysts were prepared by an epoxide-initiated sol–gel method. The first series comprised Ni–Al2O3–ZrO2 xerogel catalysts with diverse Zr/Al molar ratios. Chemical species maintained a well-dispersed state, while catalyst acidity decreased with increasing Zr/Al molar ratio. An optimal amount of Zr (Zr/Al molar ratio of 0.2) was required to achieve the highest hydrogen yield. In the second series, Ni–Al2O3–ZrO2 xerogel catalysts with different Ni content were examined. Reducibility and nickel surface area of the catalysts could be modulated by changing nickel content. Ni–Al2O3–ZrO2 catalyst with 15 wt% of nickel content showed the highest nickel surface area and the best catalytic performance. In the catalysts where copper was introduced as an additive (Cu–Ni–Al2O3–ZrO2), it was found that nickel dispersion, nickel surface area, and ethanol adsorption capacity were enhanced at an appropriate amount of copper introduction, leading to a promising catalytic activity. Ni–Sr–Al2O3–ZrO2 catalysts prepared by changing drying method were tested as well. Textural properties of Ni–Sr–Al2O3–ZrO2 aerogel catalyst produced from supercritical drying were enhanced when compared to those of xerogel catalyst produced from conventional drying. Nickel dispersion and nickel surface area were higher on Ni–Sr–Al2O3–ZrO2 aerogel catalyst, which led to higher hydrogen yield and catalyst stability over Ni–Sr–Al2O3–ZrO2 aerogel catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Schrope M (2001) Nature 414:682

    Article  CAS  Google Scholar 

  2. Llorca J, Piscina PR, Sales J, Homs N (2001) Chem Commun 7:641

    Article  Google Scholar 

  3. Balat M (2008) Int J Hydrog Energy 33:4013

    Article  CAS  Google Scholar 

  4. Sá S, Silva H, Brandao L, Sousa JM, Mendes A (2010) Appl Catal B Environ 99:43

    Article  Google Scholar 

  5. Campen A, Mondal K, Wiltowski T (2008) Int J Hydrog Energy 33:332

    Article  CAS  Google Scholar 

  6. Cimenti M, Hill JM (2009) Energies 2:377

    Article  CAS  Google Scholar 

  7. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098

    Article  CAS  Google Scholar 

  8. Granovskii M, Dincer I, Rosen MA (2007) J Power Sources 167:461

    Article  CAS  Google Scholar 

  9. Benito M, Sanz JL, Isabel R, Padilla R, Arjona R, Daza L (2005) J Power Sources 151:11

    Article  CAS  Google Scholar 

  10. Ni M, Leung DYC, Leung MKH (2007) Int J Hydrog Energy 32:3238

    Article  CAS  Google Scholar 

  11. Wu CF, Williams PT (2011) Appl Catal B Environ 102:251

    Article  CAS  Google Scholar 

  12. Finocchio E, Rossetti I, Ramis G (2013) Int J Hydrog Energy 38:3213

    Article  CAS  Google Scholar 

  13. Wanat EC, Venkataraman K, Schmidt LD (2004) Appl Catal A Gen 276:155

    Article  CAS  Google Scholar 

  14. Xu W, Liu Z, Johnston-Peck AC, Senanayake SD, Zhou G, Stacchiola D, Stach EA, Rodriguez JA (2013) ACS Catal 3:975

    Article  CAS  Google Scholar 

  15. Rossetti I, Biffi C, Bianchi CL, Nichele V, Signoretto M, Menegazzo F, Finocchio E, Ramis G, Michele AD (2012) Appl Catal B Environ 117:384

    Article  Google Scholar 

  16. Sánchez-Sánchez MC, Navarro RM, Fierro JLG (2007) Int J Hydrog Energy 32:1462

    Article  Google Scholar 

  17. Fatsikostas AN, Kondarides DI, Verykios XE (2001) Chem Commun 9:851

    Article  Google Scholar 

  18. Therdthianwong S, Therdthianwong A, Siangchin C, Yongprapat S (2008) Int J Hydrog Energy 33:991

    Article  CAS  Google Scholar 

  19. Hegarty MES, O’Connor AM, Ross JRH (1998) Catal Today 42:225

    Article  CAS  Google Scholar 

  20. Han SJ, Bang Y, Seo JG, Yoo J, Song IK (2013) Int J Hydrog Energy 38:1376

    Article  CAS  Google Scholar 

  21. Han SJ, Bang Y, Yoo J, Seo JG, Song IK (2013) Int J Hydrog Energy 38:8285

    Article  CAS  Google Scholar 

  22. Han SJ, Song JH, Bang Y, Yoo J, Park S, Kang KH, Song IK (2016) Int J Hydrog Energy 41:2554

    Article  CAS  Google Scholar 

  23. Song JH, Han SJ, Yoo J, Park S, Kim DH, Song IK (2016) J Mol Catal A Chem 424:342

    Article  CAS  Google Scholar 

  24. Pines H, Haag WO (1960) J Am Chem Soc 82:2471

    Article  CAS  Google Scholar 

  25. Krokidis X, Raybaud P, Gobichon AE, Rebours B, Euzen P, Toulhoat H (2001) J Phys Chem B 105:5121

    Article  CAS  Google Scholar 

  26. Onfroy T, Li WC, Schüth F, Knözinger H (2009) Phys Chem Chem Phys 11:3671

    Article  CAS  Google Scholar 

  27. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094

    Article  CAS  Google Scholar 

  28. Choong CKS, Huang L, Zhong Z, Lin J, Hong L, Chen L (2011) Appl Catal A Gen 407:155

    Article  CAS  Google Scholar 

  29. Djinović P, Levec J, Pintar A (2008) Catal Today 138:222

    Article  Google Scholar 

  30. Märgineanu P, Olariu A (1967) J Catal 8:359

    Article  Google Scholar 

  31. Seo JG, Youn MH, Chung JS, Song IK (2010) J Ind Eng Chem 16:795

    Article  CAS  Google Scholar 

  32. Li Z, Hu X, Zhang L, Liu S, Lu G (2012) Appl Catal A Gen 417:281

    Article  Google Scholar 

  33. Zangouei M, Moghaddam AZ, Arasteh M (2001) Chem Eng Res Des 212:17

    Google Scholar 

  34. Luo MF, Zhong YJ, Yuan XX, Zheng XM (1997) Appl Catal A Gen 162:121

    Article  CAS  Google Scholar 

  35. Lu CM, Lin YM, Wang I (2000) Appl Catal A Gen 198:223

    Article  CAS  Google Scholar 

  36. Courbon H, Hermann JM, Pichat P (1985) J Catal 95:539

    Article  CAS  Google Scholar 

  37. Goula MA, Kontou SK, Tsiakaras PE (2004) Appl Catal B Environ 49:135

    Article  CAS  Google Scholar 

  38. Biswas P, Kunzru D (2007) Int J Hydrog Energy 32:969

    Article  CAS  Google Scholar 

  39. Akande AJ, Idem RO, Dalai AK (2005) Appl Catal A Gen 287:159

    Article  CAS  Google Scholar 

  40. Song H, Zhang L, Ozkan US (2007) Green Chem 9:686

    Article  CAS  Google Scholar 

  41. Abelló S, Bolshak E, Montané D (2013) Appl Catal A Gen 450:261

    Article  Google Scholar 

  42. Andonova S, Ávila CN, Arishtirova K, Bueno JMC, Damyanova S (2011) Appl Catal B 105:346

    Article  CAS  Google Scholar 

  43. Resini C, Delgado MCH, Presto S, Alemany LJ, Riani P, Marazza R, Ramis G, Busca G (2008) Int J Hydrog Energy 33:3728

    Article  CAS  Google Scholar 

  44. Vizcaíno AJ, Carrero A, Calles JA (2007) Int J Hydrog Energy 32:1450

    Article  Google Scholar 

  45. Biswas P, Kunzru D (2007) Catal Lett 118:36

    Article  CAS  Google Scholar 

  46. Cunha AF, Wu YJ, Santos JC, Rodrigues AE (2013) Chem Eng Res Des 91:582

    Article  Google Scholar 

  47. Velu S, Gangwal SK (2006) Solid State Ionics 177:803

    Article  CAS  Google Scholar 

  48. Sachtler WM, Plank PVD (1969) Surf Sci 18:62

    Article  CAS  Google Scholar 

  49. Zanchet D, Santos JBO, Damyanova S, Gallo JMR, Bueno JMC (2015) ACS Catal 5:3841

    Article  CAS  Google Scholar 

  50. Akiyama M, Oki Y, Nagai M (2012) Catal Today 181:4

    Article  CAS  Google Scholar 

  51. Alberton AL, Souza MMVM, Schmal M (2007) Catal Today 123:257

    Article  CAS  Google Scholar 

  52. Wu YJ, Santos JC, Li P, Yu JG, Cunha AF, Rodrigues AE (2014) Can J Chem Eng 92:116

    Article  CAS  Google Scholar 

  53. Mariño F, Boveri M, Baronetti G, Laborde M (2004) Int J Hydrog Energy 29:67

    Article  Google Scholar 

  54. Natesakhawat S, Oktar O, Ozkan US (2005) J Mol Catal A Chem 241:133

    Article  CAS  Google Scholar 

  55. Schneider M, Baiker A (1995) Catal Rev Sci Eng 37:515

    Article  CAS  Google Scholar 

  56. Kung HH, Ko EI (1996) Chem Eng 64:203

    CAS  Google Scholar 

  57. Cansell F, Chevalier B, Demourgues A, Etourneau J, Even C, Pessey V, Petit S, Tressaud A, Weill F (1999) J Mater Chem 9:67

    Article  CAS  Google Scholar 

  58. Pajonk GM (1991) Appl Catal 72:217

    Article  CAS  Google Scholar 

  59. Elias KFM, Lucrédio AF, Assaf EM (2015) J Chem Eng Chem Res 2:488

    CAS  Google Scholar 

  60. Song JH, Han SJ, Yoo J, Park S, Kim DH, Song IK (2016) J Mol Catal A Chem 418–419:68

    Article  Google Scholar 

  61. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Catal Today 41:207

    Article  CAS  Google Scholar 

  62. Glaves CL, Brinker CJ, Smith DM, Davis PJ (1989) Chem Mater 1:34

    Article  CAS  Google Scholar 

  63. Pierre AC, Elaloui E, Pajonk GM (1998) Langmuir 14:66

    Article  CAS  Google Scholar 

  64. Wu Z-G, Zhao Y-X, Liu D-S (2004) Microporous Mesoporous Mater 68:127

    Article  CAS  Google Scholar 

  65. Han SJ, Bang Y, Yoo J, Kang KH, Song JH, Seo JG, Song IK (2013) Int J Hydrog Energy 38:15119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Science, ICT & Future Planning, Korea (20110031575).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Ju Han or In Kyu Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J.H., Han, S.J. & Song, I.K. Hydrogen Production by Steam Reforming of Ethanol Over Mesoporous Ni–Al2O3–ZrO2 Catalysts. Catal Surv Asia 21, 114–129 (2017). https://doi.org/10.1007/s10563-017-9230-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-017-9230-5

Keywords

Navigation