Skip to main content
Log in

Effect of Organic Reagents on the Phase Structure of MnOx Porous Nanospheres: Catalytic Oxidation of Methanol at Low Temperatures

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Three porous nanosphere-structured manganese oxide (MnOx) catalysts were prepared and used for the low-temperature catalytic oxidation of methanol using different organic reagents as structure-directing agents to modulate the surface morphology of the catalysts. The structure-effect relationship between MnOx catalysts with different microsphere structures and the catalytic oxidation activity of methanol were analyzed using various characterization techniques. The MnOx–J catalyst had significantly higher catalytic oxidation activity for methanol (T90 = 130 °C) than the other MnOx catalysts. The characterization results indicate that the regulation of 2-methylimidazole promotes the formation of structural defects, surface-adsorbed oxygen, and Mn3+ on the surface of the manganese-based catalysts and enhances the low-temperature reduction capacity of the catalysts—the primary reason for the high reactivity of the MnOx–J samples.

Graphical Abstract

Three MnOx catalysts with porous nanosphere structures were synthesized using different organic reagents as structure-directing agents. Among them, the 2-methylimidazole organo-reagent promoted the formation of structural defects, surface adsorbed oxygen and Mn3+ on the surface of the manganese-based catalysts, thus enhancing the catalytic oxidation activity of the catalysts in low-temperature methanol-catalyzed reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang WH, Su Z, Xu ZH, Yang WN, Peng Y, Li JH (2019) Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates. Appl Catal B: Environ 260:118150

    Google Scholar 

  2. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao ZP (2019) Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev 119(7):4471–4568

    CAS  PubMed  Google Scholar 

  3. Zhang XY, Gao B, Creamer AE, Cao CC, Li YC (2017) Adsorption of VOCs onto engineered carbon materials: a review. J Hazard Mater 338:102–123

    CAS  PubMed  Google Scholar 

  4. Zhang XJ, Zhao JG, Song ZX, Liu W, Zhao H, Zhao M, Xing Y, Ma Z, Du HX (2020) The catalytic oxidation performance of toluene over the Ce-Mn-Ox catalysts: effect of synthetic routes. J Colloid Interface Sci 562:170–181

    CAS  PubMed  Google Scholar 

  5. Hou ZQ, Pei WB, Zhang X, Zhang KF, Liu YX, Deng JG, Jing L, Dai HX (2020) Rare earth oxides and their supported noble metals in application of environmental catalysis. J Rare Earths 38:819–839

    CAS  Google Scholar 

  6. Zhang CH, Huang H, Li GQ, Wang L, Song L, Li XB (2019) Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnOx/HZSM-5 catalysts author links open overlay panel. Catal Today 327:374–381

    CAS  Google Scholar 

  7. Zhou LL, Zhang BJ, Li ZJ, Zhang XJ, Liu RJ, Yun J (2020) Amorphous-microcrystal combined manganese oxides for efficiently catalytic combustion of VOCs. Mol Catal 489:110920

    CAS  Google Scholar 

  8. Chen X, Li L, Wang XL, Xie K, Wang YQ (2021) Effect of manganese valence on specific capacitance in supercapacitors of manganese oxide microspheres. Chem Eur J 27(35):9152–9159

    CAS  PubMed  Google Scholar 

  9. Zhu SL, Wang J, Nie LH (2019) Progress of catalytic oxidation of formaldehyde over manganese oxides. ChemistrySelect 4(41):12085–12098

    CAS  Google Scholar 

  10. Villalobos M, Toner B, Bargar J, Sposito G (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim Cosmochim Acta 67(14):2649–2662

    CAS  Google Scholar 

  11. Wang F, Dai HX, Deng JG, Bai GM, Ji KM, Liu YX (2012) Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ Sci Technol 46:4034–4041

    CAS  PubMed  Google Scholar 

  12. Luo MM, Cheng Y, Peng XZ, Pan W (2019) Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene. Chem Eng J 369:758–765

    CAS  Google Scholar 

  13. Bai BY, Li JH, Hao JM (2014) 1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol. Appl Catal B: Environ 164:241–250

    Google Scholar 

  14. Figueredo MJM, Cocuzza C, Bensaid S, Fino D, Piumetti M, Russo N (2021) Catalytic abatement of volatile organic compounds and soot over manganese oxide catalysts. Materials 14(16):4534–4547

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Xie XW, Li Y, Liu ZQ, Haruta M, Shen WJ (2009) Lowtemperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749

    CAS  PubMed  Google Scholar 

  16. Zhang L, Zhu SM, Li RZ, Deng W, Hong C, Liu DQ, Guo LM (2020) Ag-doped δ-MnO2 nanosheets as robust catalysts for toluene combustion. ACS Appl Nano Mater 3:11869–11880

    CAS  Google Scholar 

  17. Yang WH, Peng Y, Wang Y, Liu H, Su Z, Yang WN, Chen JJ, Si WZ, Li JH (2020) Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: active heterostructure interfaces. Appl Catal B 278:119279

    CAS  Google Scholar 

  18. Santos YP, Pereira MFR, Órfão JJM, Figueiredo JL (2009) Synthesis and characterization of manganese oxide catalysts for the total oxidation of ethyl acetate. Top Catal 52:470–481

    CAS  Google Scholar 

  19. Huang WX, Hua Q, Cao T (2014) Influence and removal of capping ligands on catalytic colloidal nanoparticles. Catal Lett 144:1355–1369

    CAS  Google Scholar 

  20. Duan HM, Wang HJ, Huang WX (2021) Influence of polyvinylpyrrolidone capping ligands on electrocatalytic oxidation of methanol and ethanol over palladium nanocrystal electrocatalysts. Acta Phys Chim Sin 37(10):2003005

    Google Scholar 

  21. Wang H, Chen H, Wang Y, Lyu YK (2018) Performance and mechanism comparison of manganese oxides at different valence states for catalytic oxidation of NO. Chem Eng J 361:1161–1172

    Google Scholar 

  22. Iyer A, Del-Pilar J, King’ondu CK, Kissel E, Garces HF, Huang H, El-Sawy AM, Dutta PK, Suib SL (2012) Water oxidation catalysis using amorphous manganese oxides, octahedral molecular sieves (OMS-2), and octahedral layered (OL-1) manganese oxide structures. J Phys Chem C 116:6474–6483

    CAS  Google Scholar 

  23. Kong FL, Zhang HY, Chai H, Liu BL, Cao YL (2021) Insight into the crystal structures and surface property of manganese oxide on CO catalytic oxidation performance. Inorg Chem 60:5812–5820

    CAS  PubMed  Google Scholar 

  24. Zhang XJ, Ma Z, Song ZX, Zhao H, Liu W, Zhao M, Zhao JG (2019) Role of cryptomelane in surface-adsorbed oxygen and Mn chemical valence in MnOx during the catalytic oxidation of toluene. J Phys Chem C 123:17255–17264

    CAS  Google Scholar 

  25. Shen Q, Zhang LY, Sun NN, Wang H, Zhong LS, He C, Wei W, Sun YH (2017) Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation. Chem Eng J 322:46–55

    CAS  Google Scholar 

  26. Li WC, Wen XY, Wang XJ, Li J, Ren EB, Shi ZF, Liu CM, Mo DQ, Mo SP (2021) Oriented growth of δ-MnO2 nanosheets over core-shell Mn2O3@δ-MnO2 catalysts: an interface-engineered effects for enhanced low-temperature methanol oxidation. Mol Catal 514:111847

    CAS  Google Scholar 

  27. Li LM, Jing FL, Yan JL, Jing J, Chu W (2017) Highly effective self-propagating synthesis of CeO2-doped MnO2 catalysts for toluene catalytic combustion. Catal Today 297:167–172

    CAS  Google Scholar 

  28. Jia JB, Zhang PY, Chen L (2016) Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl Catal B: Environ 189:210–218

    CAS  Google Scholar 

  29. Liang SH, Teng F, Bulgan G, Zong RL, Zhu YF (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112:5307–5315

    CAS  Google Scholar 

  30. Li RZ, Zhang L, Zhu SM, Fu SY, Dong XP, Ida S, Zhang LX, Guo LM (2020) Layered δ-MnO2 as an active catalyst for toluene catalytic combustion. Appl Catal A 602:117715

    CAS  Google Scholar 

  31. Park E, Chin SM, Jeong JY, Jurng JS (2012) Low-temperature NO oxidation over Mn/TiO2 nanocomposite synthesized by chemical vapor condensation: effects of Mn precursor on the surface Mn species. Microporous Mesoporous Mater 163:96–101

    CAS  Google Scholar 

  32. Deng Y, Tang W, Li W, Chen Y (2018) MnO2-nanowire@NiO-nanosheet core-shell hybrid nanostructure derived interfacial effect for promoting catalytic oxidation activity. Catal Today 308:58–63

    CAS  Google Scholar 

  33. Dong IH, Tang YX, Li B, Zhou LY, Gong FZ, He HX, Sun BZ, Tang CJ, Gao F, Dong L (2016) Influence of molar ratio and calcination temperature on the properties of TixSn1 − xO2 supporting copper oxide for CO oxidation. Appl Catal B: Environ 180:451–462

    CAS  Google Scholar 

  34. Yang Y, Huang J, Wang SW, Deng SB, Wang B, Yu G (2013) Catalytic removal of gaseous unintentional POPs on manganese oxide octahedral molecular sieves. Appl Catal B: Environ 142–143:568–578

    Google Scholar 

  35. Santos YP, Pereira MFR, Órfão JJM, Figueiredo JL (2010) The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl Catal B: Environ 99(1–2):353–363

    CAS  Google Scholar 

  36. Xue L, Zhang CB, He H, Teraoka Y (2007) Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl Catal B: Environ 75:167–174

    CAS  Google Scholar 

  37. Chen BB, Wu B, Yu LM, Crocker M, Shi C (2020) Investigation into the catalytic roles of various oxygen species over different crystal phases of MnO2 for C6H6 and HCHO oxidation. ACS Catal 10:6176–6187

    CAS  Google Scholar 

  38. Lee HJ, Yang JH, You JH, Yoon BY (2020) Sea-urchin-like mesoporous copper-manganese oxide catalysts: influence of copper on benzene oxidation. J Ind Eng Chem 89:156–165

    CAS  Google Scholar 

  39. Liu LZ, Li JX, Zhang HB, Li L, Zhou P, Meng XL, Guo MM, Jia JP, Sun TH (2019) In situ fabrication of highly active γ-MnO2/SmMnO3 catalyst for deep catalytic oxidation of gaseous benzene, ethylbenzene, toluene, and o-xylene. J Hazard Mater 362:178–186

    CAS  PubMed  Google Scholar 

  40. Wan X, Wang L, Gao S, Lang XY, Wang LX, Zhang T, Dong AQ, Wang WC (2021) Low-temperature removal of aromatics pollutants via surface labile oxygen over Mn-based mullite catalyst SmMn2O5. Chem Eng J 410:128305

    CAS  Google Scholar 

  41. Li K, Chen C, Zhang HB, Hu XJ, Sun TH, Jia JP (2019) Effects of phase structure of MnO2 and morphology of δ-MnO2 on toluene catalytic oxidation. Appl Surf Sci 496:143662

    CAS  Google Scholar 

  42. Dudrica R, Bortnica R, Soucaa G, Ciceo-Lucacelab R, Stiufiucc R, Teteana R (2019) XPS on Nd0.6-xBixSr0.4MnO3 nano powders. Appl Surf Sci 487:17–21

    Google Scholar 

  43. Tang WX, Yao MS, Deng YZ, Li XF, Han N, Wu XF, Chen YF (2016) Decoration of one-dimensional MnO2 with Co3O4 nanoparticles: a heterogeneous interface for remarkably promoting catalytic oxidation activity. Chem Eng J 306:709–718

    CAS  Google Scholar 

  44. Du JP, Qu ZP, Dong C, Song LX, Qin Y, Huang N (2018) Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach. Appl Surf Sci 433:1025–1035

    CAS  Google Scholar 

  45. Mo SP, Li J, Liao RQ, Peng P, Li JJ, Wu JL, Fu ML, Liao L, Shen TM, Xie QL, Ye DQ (2021) Unraveling the decisive role of surface CeO2 nanoparticles in the Pt-CeO2/MnO2 hetero-catalysts for boosting toluene oxidation: synergistic effect of surface decorated and intrinsic O-vacancies. Chem Eng J 418:129399

    CAS  Google Scholar 

  46. Tsoncheva T, Issa G, Genova I, Dimitrov M, Kovacheva D, Henych J, Kormunda M, Scotti N, Tolasz J, Štengl V (2018) Structure and catalytic activity of hydrothermally obtained titanium-tin binary oxides for sustainable environment: evaluation and control. Microporous Mesoporous Mater 276:223–231

    Google Scholar 

  47. Huang YC, Ye KH, Li HB, Fan WJ, Zhao FY, Zhang YM, Ji HB (2016) A highly durable catalyst based on CoxMn3–xO4 nanosheets for low-temperature formaldehyde oxidation. Nano Res 9:3881–3892

    CAS  Google Scholar 

  48. Shen YJ, Deng J, Impeng S, Li SX, Yan TT, Zhang JP, Shi LY, Zhang DS (2020) Boosting toluene combustion by engineering Co-O strength in cobalt oxide catalysts. Environ Sci Technol 54:10342–10350. https://doi.org/10.1021/acs.est.0c02680

    Article  CAS  PubMed  Google Scholar 

  49. Huang HB, Xu Y, Feng QY, Leung DYC (2015) Low temperature catalytic oxidation of volatile organic compounds: a review. Catal Sci Technol. https://doi.org/10.1039/c4cy01733a

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the research funds of the China Postdoctoral Science Foundation (No. 2020M683629XB), Study on Key Technologies of landscape ecological restoration of Huixian wetland in Guilin (20180101-3), The Guangxi Science & Technology Planning Project (Grant No. Guike-AD19110007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqing Mo.

Ethics declarations

Conflict of interest

The authors declare that they have no commercial or related conflicts of interest in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 373 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Li, W., Wen, X. et al. Effect of Organic Reagents on the Phase Structure of MnOx Porous Nanospheres: Catalytic Oxidation of Methanol at Low Temperatures. Catal Lett 153, 2482–2492 (2023). https://doi.org/10.1007/s10562-022-04158-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04158-1

Keywords

Navigation